Management Information Systems

MANAGING THE DIGITAL FIRM

THIRTEENTH EDITION

GLOBAL EDITION

Kenneth C. Laudon
New York University

Jane P. Laudon
Azimuth Information Systems

PEARSON
About the Authors

Kenneth C. Laudon is a Professor of Information Systems at New York University’s Stern School of Business. He holds a B.A. in Economics from Stanford and a Ph.D. from Columbia University. He has authored twelve books dealing with electronic commerce, information systems, organizations, and society. Professor Laudon has also written over forty articles concerned with the social, organizational, and management impacts of information systems, privacy, ethics, and multimedia technology.

Professor Laudon's current research is on the planning and management of large-scale information systems and multimedia information technology. He has received grants from the National Science Foundation to study the evolution of national information systems at the Social Security Administration, the IRS, and the FBI. Ken's research focuses on enterprise system implementation, computer-related organizational and occupational changes in large organizations, changes in management ideology, changes in public policy, and understanding productivity change in the knowledge sector.

Ken Laudon has testified as an expert before the United States Congress. He has been a researcher and consultant to the Office of Technology Assessment (United States Congress), Department of Homeland Security, and to the Office of the President, several executive branch agencies, and Congressional Committees. Professor Laudon also acts as an in-house educator for several consulting firms and as a consultant on systems planning and strategy to several Fortune 500 firms.

At NYU’s Stern School of Business, Ken Laudon teaches courses on Managing the Digital Firm, Information Technology and Corporate Strategy, Professional Responsibility (Ethics), and Electronic Commerce and Digital Markets. Ken Laudon's hobby is sailing.

Jane Price Laudon is a management consultant in the information systems area and the author of seven books. Her special interests include systems analysis, data management, MIS auditing, software evaluation, and teaching business professionals how to design and use information systems.

Jane received her Ph.D. from Columbia University, her M.A. from Harvard University, and her B.A. from Barnard College. She has taught at Columbia University and the New York University Graduate School of Business. She maintains a lifelong interest in Oriental languages and civilizations.

The Laudons have two daughters, Erica and Elisabeth, to whom this book is dedicated.
# Brief Contents

## Part One

**Organizations, Management, and the Networked Enterprise** 31

- **Chapter 1** Information Systems in Global Business Today 32
- **Chapter 2** Global E-Business and Collaboration 70
- **Chapter 3** Information Systems, Organizations, and Strategy 108
- **Chapter 4** Ethical and Social Issues in Information Systems 150

## Part Two

**Information Technology Infrastructure** 191

- **Chapter 5** IT Infrastructure and Emerging Technologies 192
- **Chapter 6** Foundations of Business Intelligence: Databases and Information Management 238
- **Chapter 7** Telecommunications, the Internet, and Wireless Technology 276
- **Chapter 8** Securing Information Systems 322

## Part Three

**Key System Applications for the Digital Age** 365

- **Chapter 9** Achieving Operational Excellence and Customer Intimacy: Enterprise Applications 366
- **Chapter 10** E-Commerce: Digital Markets, Digital Goods 400
- **Chapter 11** Managing Knowledge 446
- **Chapter 12** Enhancing Decision Making 482

## Part Four

**Building and Managing Systems** 515

- **Chapter 13** Building Information Systems 516
- **Chapter 14** Managing Projects 556
- **Chapter 15** Managing Global Systems 590

(available on the Web at www.pearsonglobaleditions.com/laudon)

References 591
Glossary 607
Indexes 621
Complete Contents

Part One  Organizations, Management, and the Networked Enterprise  31

Chapter 1  Information Systems in Global Business Today  32
◆ Opening Case: Efficiency in Wood Harvesting with Information Systems  33
1.1 The Role of Information Systems in Business Today  35
   How Information Systems are Transforming Business  35 • What’s New in Management Information Systems?  36 • Globalization Challenges and Opportunities: A Flattened World  38
◆ Interactive Session: Management Running the Business from the Palm of Your
Hand  39
   The Emerging Digital Firm  41 • Strategic Business Objectives of Information Systems  42
1.2 Perspectives on Information Systems  45
   What Is an Information System?  45 • Dimensions of Information Systems  48 • It Isn’t Just Technology: A Business Perspective on Information Systems  52
◆ Interactive Session: Technology UPS Competes Globally with Information
Technology  53
   Complementary Assets: Organizational Capital and the Right Business Model  56
1.3 Contemporary Approaches to Information Systems  58
   Technical Approach  58 • Behavioral Approach  58 • Approach of This Text: Sociotechnical Systems  59
Review Summary  62 • Key Terms  63 • Review Questions  63 • Discussion
Questions  64 • Hands-On MIS Projects  64 • Video Cases  65 • Collaboration and Teamwork Project  65
◆ Case Study: Mashaweer 66

Chapter 2  Global E-business and Collaboration  70
◆ Opening Case: Telus Embraces Social Learning  71
2.1 Business Processes and Information Systems  73
   Business Processes  73 • How Information Technology Improves Business Processes  75
2.2 Types of Information Systems  75
   Systems for Different Management Groups  76
◆ Interactive Session: Technology Schiphol International Hub  78
Contents

Systems for Linking the Enterprise  83
◆ Interactive Session: Management  Piloting Procter & Gamble from Decision Cockpits  84
E-Business, E-Commerce, and E-Government  87

2.3 Systems for Collaboration and Social Business  88

2.4 The Information Systems Function in Business  98
The Information Systems Department  99 • Organizing the Information Systems Function  100


Review Summary  101 • Key Terms  102 • Review Questions  102 • Discussion Questions  103 • Hands-On MIS Projects  103 • Video Cases  104 • Collaboration and Teamwork Project  104
◆ Case Study: Modernization of NTUC Income  105

Chapter 3

Information Systems, Organizations, and Strategy  108
◆ Opening Case: Will Sears's Technology Strategy Work This Time?  109

3.1 Organizations and Information Systems  111
What Is an Organization?  112 • Features of Organizations  114

3.2 How Information Systems Impact Organizations and Business Firms  119
Economic Impacts  119 • Organizational and Behavioral Impacts  120 • The Internet and Organizations  123 • Implications for the Design and Understanding of Information Systems  123

3.3 Using Information Systems to Achieve Competitive Advantage  123
Porter’s Competitive Forces Model  124 • Information System Strategies for Dealing with Competitive Forces  125 • The Internet’s Impact on Competitive Advantage  128
◆ Interactive Session: Organizations  Technology Helps Starbucks Find New Ways to Compete  129
The Business Value Chain Model  131
◆ Interactive Session: Technology  Automakers Become Software Companies  134
Synergies, Core Competencies, and Network-Based Strategies  136

3.4 Using Systems for Competitive Advantage: Management Issues  140
Sustaining Competitive Advantage  140 • Aligning IT with Business Objectives  141 • Managing Strategic Transitions  142

Learning Track Module: The Changing Business Environment for Information Technology  142

Review Summary  142 • Key Terms  143 • Review Questions  143 • Discussion Questions  144 • Hands-On MIS Projects  144 • Video Cases  146 • Collaboration and Teamwork Project  146
Contents
7

◆ Case Study: Can This Bookstore Be Saved? 147

Chapter 4

Ethical and Social Issues in Information Systems 150

◆ Opening Case: Ethical Issues Facing the Use of Technologies for the Aged Community 151

4.1 Understanding Ethical and Social Issues Related to Systems 153

A Model for Thinking About Ethical, Social, and Political Issues 155 • Five Moral Dimensions of the Information Age 155 • Key Technology Trends That Raise Ethical Issues 156

4.2 Ethics in an Information Society 159

Basic Concepts: Responsibility, Accountability, and Liability 159 • Ethical Analysis 160 • Candidate Ethical Principles 161 • Professional Codes of Conduct 161 • Some Real-World Ethical Dilemmas 162

4.3 The Moral Dimensions of Information Systems 162

Information Rights: Privacy and Freedom in the Internet Age 162 • Property Rights: Intellectual Property 169

◆ Interactive Session: Technology Life on the Grid: iPhone Becomes iTrack 170

Accountability, Liability, and Control 174 • System Quality: Data Quality and System Errors 176 • Quality of Life: Equity, Access, and Boundaries 176

◆ Interactive Session: Organizations Monitoring in the Workplace 179

Learning Track Module: Developing a Corporate Code of Ethics for Information Systems 183

Review Summary 184 • Key Terms 184 • Review Questions 185 • Discussion Questions 185 • Hands-On MIS Projects 185 • Video Cases 187 • Collaboration and Teamwork Project 187

◆ Case Study: Facebook: It's About the Money 188

Part Two

Information Technology Infrastructure 191

Chapter 5

IT Infrastructure and Emerging Technologies 192

◆ Opening Case: Reforming the Regulatory System for Construction Permits 193

5.1 IT Infrastructure 195

Defining IT Infrastructure 195 • Evolution of IT Infrastructure 197 • Technology Drivers of Infrastructure Evolution 201

5.2 Infrastructure Components 206

Computer Hardware Platforms 207 • Operating System Platforms 207 • Enterprise Software Applications 208 • Data Management and Storage 208 • Networking/Telecommunications Platforms 208 • Internet Platforms 209 • Consulting and System Integration Services 209

5.3 Contemporary Hardware Platform Trends 210
Chapter 6  
Foundations of Business Intelligence: Databases and Information Management  238

◆ Opening Case:  BAE Systems  239
6.1 Organizing Data in a Traditional File Environment  241  
File Organization Terms and Concepts  241 • Problems with the Traditional File Environment  242

6.2 The Database Approach to Data Management  244  
Database Management Systems  244 • Capabilities of Database Management Systems  249 • Designing Databases  251

6.3 Using Databases to Improve Business Performance and Decision Making  254  
The Challenge of Big Data  254 • Business Intelligence Infrastructure  254 • Analytical Tools: Relationships, Patterns, Trends  257

◆ Interactive Session: Technology  Big Data, Big Rewards  261
Databases and the Web  262

◆ Interactive Session: Organizations  Controversy Whirls Around the Consumer Product Safety Database  264
6.4 Managing Data Resources  265  
Establishing an Information Policy  265 • Ensuring Data Quality  266

Learning Track Modules: Database Design, Normalization, and Entity-Relationship Diagramming, Introduction to SQL, Hierarchical and Network Data Models  267
Chapter 7

Telecommunications, the Internet, and Wireless Technology 276

◆ Opening Case: RFID and Wireless Technology Speed Up Production at Continental Tires 277

7.1 Telecommunications and Networking in Today’s Business World 279
   Networking and Communication Trends 279 • What Is a Computer Network? 280 • Key Digital Networking Technologies 282

7.2 Communications Networks 285
   Signals: Digital vs. Analog 285 • Types of Networks 286 • Transmission Media and Transmission Speed 287

7.3 The Global Internet 288
   What Is the Internet? 288 • Internet Addressing and Architecture 288

◆ Interactive Session: Organizations The Battle over Net Neutrality 292
   Internet Services and Communication Tools 293

◆ Interactive Session: Management Monitoring Employees on Networks: Unethical or Good Business? 296
   The Web 298

7.4 The Wireless Revolution 307
   Cellular Systems 307 • Wireless Computer Networks and Internet Access 308 • RFID and Wireless Sensor Networks 310


Chapter 8

Securing Information Systems 322

◆ Opening Case: You’re on LinkedIn? Watch Out! 323

8.1 System Vulnerability and Abuse 325
   Why Systems Are Vulnerable 325 • Malicious Software: Viruses, Worms, Trojan Horses, and Spyware 328 • Hackers and Computer Crime 330 • Internal Threats: Employees 335 • Software Vulnerability 335

◆ Interactive Session: Organizations Stuxnet and the Changing Face of Cyberwarfare 336

8.2 Business Value of Security and Control 338
Legal and Regulatory Requirements for Electronic Records 338 • Electronic Evidence and Computer Forensics 339

8.3 Establishing a Framework for Security and Control 340
Information Systems Controls 340 • Risk Assessment 341 • Security Policy 342 • Disaster Recovery Planning and Business Continuity Planning 343 • The Role of Auditing 344

8.4 Technologies and Tools for Protecting Information Resources 345

◆ Interactive Session: Technology MWEB Business: Hacked 354


Review Summary 357 • Key Terms 358 • Review Questions 358 • Discussion Questions 359 • Hands-On MIS Projects 360 • Video Cases 361 • Collaboration and Teamwork Project 361

◆ Case Study: Information Security Threats and Policies in Europe 362

Part Three  Key System Applications for the Digital Age 365

Chapter 9

Achieving Operational Excellence and Customer Intimacy: Enterprise Applications 366

◆ Opening Case: Technology Helps Nvidia Anticipate the Future 367

9.1 Enterprise Systems 369
What Are Enterprise Systems? 369 • Enterprise Software 370 • Business Value of Enterprise Systems 371

9.2 Supply Chain Management Systems 372
The Supply Chain 372 • Information Systems and Supply Chain Management 374 • Supply Chain Management Software 376 • Global Supply Chains and the Internet 376

◆ Interactive Session: Organizations DP World Takes Port Management to the Next Level with RFID 377
Business Value of Supply Chain Management Systems 379

9.3 Customer Relationship Management Systems 381
What Is Customer Relationship Management? 381 • Customer Relationship Management Software 382 • Operational and Analytical CRM 386 • Business Value of Customer Relationship Management Systems 386

9.4 Enterprise Applications: New Opportunities and Challenges 387
Enterprise Application Challenges 387 • Next-Generation Enterprise Applications 388
Chapter 10

E-commerce: Digital Markets, Digital Goods 400

◆ Opening Case: Groupon's Business Model: Social and Local 401

10.1 E-commerce and the Internet 403


10.2 E-commerce: Business and Technology 412

Types of E-Commerce 413 • E-Commerce Business Models 413 • E-Commerce Revenue Models 416

◆ Interactive Session: Organizations Location-Based Marketing and Advertising 417

Social Networking and The Wisdom of Crowds 420 • E-Commerce Marketing 421 • B2B E-commerce: New Efficiencies and Relationships 426

◆ Interactive Session: Management Social Commerce Creates New Customer Relationships 427

10.3 The Mobile Digital Platform and Mobile E-commerce 431

Location-based Services and Applications 432 • Other Mobile Commerce Services 433

10.4 Building an E-commerce Presence 434

Pieces of the Site-Building Puzzle 435 • Business Objectives, System Functionality, and Information Requirements 435 • Building the Web Site: In-house Versus Outsourcing 436


Review Summary 439 • Key Terms 440 • Review Questions 440 • Discussion Questions 441 • Hands-On MIS Projects 441 • Video Cases 442 • Collaboration and Teamwork Project 442

◆ Case Study: To Pay or Not to Pay: Zagat's Dilemma 443

Chapter 11

Managing Knowledge 446

◆ Opening Case: Designing Drugs Virtually 447

11.1 The Knowledge Management Landscape 449

Important Dimensions of Knowledge 449 • The Knowledge Management Value Chain 451 • Types of Knowledge Management Systems 453
11.2 Enterprise-Wide Knowledge Management Systems 454
   Enterprise Content Management Systems 455 • Knowledge Network
   Systems 456 • Collaboration And Social Tools and Learning Management
   Systems 456
11.3 Knowledge Work Systems 457
   Knowledge Workers and Knowledge Work 457 • Requirements of
   Knowledge Work Systems 458 • Examples of Knowledge Work Systems 459
   ◆ Interactive Session: Technology Firewire Surfboards Lights Up with CAD 460
11.4 Intelligent Techniques 463
   Capturing Knowledge: Expert Systems 463 • Organizational Intelligence:
   Case-Based Reasoning 466 • Fuzzy Logic Systems 467 • Machine
   Learning 468
   ◆ Interactive Session: Organizations Albassami’s Job is not Feasible without
   IT 469
   Intelligent Agents 473 • Hybrid AI Systems 474
Learning Track Module: Challenges of Knowledge Management Systems 474
Review Summary 475 • Key Terms 476 • Review Questions 476 • Discussion
Questions 477 • Hands-On MIS Projects 477 • Video Cases 478 • Collaboration
and Teamwork Project 478
   ◆ Case Study: Knowledge Management and Collaboration at Tata Consulting
   Services 479

Chapter 12 Enhancing Decision Making 482
   ◆ Opening Case: Moneyball: Data-Driven Baseball 483
12.1 Decision Making and Information Systems 485
   Business Value of Improved Decision Making 485 • Types of Decisions 485
   • The Decision-Making Process 487 • Managers and Decision Making in
   the Real World 488 • High-Velocity Automated Decision Making 491
12.2 Business Intelligence in the Enterprise 492
   What Is Business Intelligence? 492 • The Business Intelligence
   Environment 493
   ◆ Interactive Session: Organizations Analytics Help the Cincinnati Zoo Know Its
   Customers 494
   Business Intelligence and Analytics Capabilities 496 • Management
   Strategies for Developing BI and BA Capabilities 500
12.3 Business Intelligence Constituencies 501
   Decision Support for Operational and Middle Management 501 • Decision
   Support for Senior Management: Balanced Scorecard and Enterprise
   Performance Management Methods 504 • Group Decision-Support Systems
   (GDSS) 505
   ◆ Interactive Session: Management Colgate-Palmolive Keeps Managers Smiling
   with Executive Dashboards 506
Learning Track Module: Building and Using Pivot Tables 508
Review Summary 508 • Key Terms 509 • Review Questions 509 • Discussion
Questions 510 • Hands-On MIS Projects 510 • Video Cases 511 • Collaboration
and Teamwork Project 511
Part Four  Building and Managing Systems  515

Chapter 13  Building Information Systems  516


13.1 Systems as Planned Organizational Change  520
  Systems Development and Organizational Change  520 ▪ Business Process Redesign  522

13.2 Overview of Systems Development  525

◆ Interactive Session: Organizations Burton Snowboards Speeds Ahead with Nimble Business Processes  526
  Systems Analysis  528 ▪ Systems Design  528 ▪ Completing the Systems Development Process  529 ▪ Modeling and Designing Systems: Structured and Object-Oriented Methodologies  532

13.3 Alternative Systems-Building Approaches  537
  Traditional Systems Life Cycle  537 ▪ Prototyping  538 ▪ End-User Development  539 ▪ Application Software Packages and Outsourcing  541

13.4 Application Development for the Digital Firm  544
  Rapid Application Development (RAD)  544 ▪ Component-Based Development and Web Services  544 ▪ Mobile Application Development  545


◆ Interactive Session: Technology What Does It Take to Go Mobile?  547
  Review Summary  548 ▪ Key Terms  550 ▪ Review Questions  550 ▪ Discussion Questions  551 ▪ Hands-On MIS Projects  551 ▪ Video Cases  553 ▪ Collaboration and Teamwork Project  553

◆ Case Study: Honam Petrochemical's Quest for Better Management Reports  554

Chapter 14  Managing Projects  556

◆ Opening Case: Nu Skin's New Human Resources System Project Puts People First  557

14.1 The Importance of Project Management  559
  Runaway Projects and System Failure  559 ▪ Project Management Objectives  560

◆ Interactive Session: Management Austin Energy's Billing System Can't Light Up  561

14.2 Selecting Projects  563
  Management Structure for Information Systems Projects  563 ▪ Linking Systems Projects to the Business Plan  564 ▪ Information Requirements
and Key Performance Indicators 566 • Portfolio Analysis 566 • Scoring
Models 567

14.3 Establishing the Business Value of Information Systems 567
Information System Costs and Benefits 568 • Real Options Pricing
Models 570 • Limitations of Financial Models 571

14.4 Managing Project Risk 571
Dimensions of Project Risk 571 • Change Management and the Concept of
Implementation 572 • Controlling Risk Factors 574

◆ Interactive Session: Organizations Westinghouse Electric Takes on the Risks of
a “Big Bang” Project 578
Designing for the Organization 579 • Project Management Software
Tools 580

Learning Track Modules: Capital Budgeting Methods for Information System
Investments, Information Technology Investments and Productivity, Enterprise
Analysis (Business Systems Planning) and Critical Success Factors 581
Review Summary 582 • Key Terms 582 • Review Questions 583 • Discussion
Questions 583 • Hands-On MIS Projects 583 • Video Cases 585 • Collaboration
and Teamwork Project 585
◆ Case Study: NYCAPS and CityTime: A Tale of Two New York City IS
Projects 586

Chapter 15
Managing Global Systems 590
(available on the Web at www.pearsonglobaleditions.com/laudon,
“Instructor Resources”)

◆ Opening Case: L’Oréal’s Global Makeover 15-1

15.1 The Growth of International Information Systems 15-3
  Developing an International Information Systems Architecture 15-4 • The
  Global Environment: Business Drivers and Challenges 15-5 • State of the
  Art 15-8

15.2 Organizing International Information Systems 15-9
  Global Strategies and Business Organization 15-9 • Global Systems to Fit
  the Strategy 15-10 • Reorganizing the Business 15-11

15.3 Managing Global Systems 15-12
  A Typical Scenario: Disorganization on a Global Scale 15-12 •
  Global Systems Strategy 15-13 • The Management Solution:
  Implementation 15-15

◆ Interactive Session: Organizations Hasbro Develops a Global Systems
  Strategy 15-17

15.4 Technology Issues and Opportunities for Global Value Chains 15-19
  Computing Platforms and Systems Integration 15-19 • Connectivity 15-20
  • Software Localization 15-21

◆ Interactive Session: Management CombineNet ASAP Helps Primark Manage Its
  Global Supply Chain 15-23
Contents


◆ Case Study: Sherwin-Williams Paints the World 15-29

References 591
Glossary 607
Indexes 621
BUSINESS CASES AND INTERACTIVE SESSIONS

Here are some of the business firms you will find described in the cases and Interactive Sessions of this book:

Chapter 1: Information Systems in Global Business Today
Efficiency in Wood Harvesting with Information Systems
Running the Business from the Palm of Your Hand
UPS Competes Globally with Information Technology
Mashaweer

Chapter 2: Global E-Business and Collaboration
Telus Embraces Social Learning
Schiphol International Hub
Piloting Procter & Gamble from Decision Cockpits
Modernization of NTUC Income

Chapter 3: Information Systems, Organizations, and Strategy
Will Sears's Technology Strategy Work This Time?
Technology Helps Starbucks Find New Ways to Compete
Automakers Become Software Companies
Can This Bookstore Be Saved?

Chapter 4: Ethical and Social Issues in Information Systems
Ethical Issues Facing the use of Technologies for the Aged Community
Life on the Grid: iPhone Becomes iTrack
Monitoring in the Workplace
Facebook: It's About the Money

Chapter 5: IT Infrastructure and Emerging Technologies
Reforming the Regulatory System for Construction Permits
Should You Use Your iPhone for Work?
Nordea Goes Green with IT
Should Businesses Move to the Cloud?

Chapter 6: Foundations of Business Intelligence: Databases and Information Management
BAE Systems
Big Data, Big Rewards
Controversy Whirls Around the Consumer Product Safety Database
Lego: Embracing Change by Combining BI with a Flexible Information System

Chapter 7: Telecommunications, the Internet and Wireless Technology
RFID and Wireless Technology Speed Up Production at Continental Tires
The Battle Over Net Neutrality
Monitoring Employees on Networks: Unethical or Good Business?
Apple, Google, and Microsoft Battle for your Internet Experience
Chapter 8: Securing Information Systems
You’re on LinkedIn? Watch Out!
Stuxnet and the Changing Face of Cyberwarfare
MWEB Business: Hacked
Information Security Threats and Policies in Europe

Chapter 9: Achieving Operational Excellence and Customer Intimacy: Enterprise Applications
Technology Helps Nvidia Anticipate the Future
DP World Takes Port Management to the Next Level with RFID
Customer Relationship Management Heads to the Cloud
Summit Electric Lights Up with a New ERP System

Chapter 10: E-Commerce: Digital Markets, Digital Goods
Groupon’s Business Model: Social and Local
Location-Based Marketing and Advertising
Social Commerce Creates New Customer Relationships
To Pay or Not to Pay: Zagat’s Dilemma

Chapter 11: Managing Knowledge
Designing Drugs Virtually
Albassami’s Job is not Feasible without IT
Firewire Surfboards Lights Up with CAD
Knowledge Management and Collaboration at Tata Consulting Services

Chapter 12: Enhancing Decision Making
Moneyball: Data-Driven Baseball
Analytics Help the Cincinnati Zoo Know Its Customers
Colgate-Palmolive Keeps Managers Smiling with Executive Dashboards
Zynga Wins with Business Intelligence

Chapter 13: Building Information Systems
Burton Snowboards Speeds Ahead with Nimble Business Processes
What Does It Take to Go Mobile?
Honam Petrochemical’s Quest for Better Management Reports

Chapter 14: Managing Projects
Nu Skin’s New Human Resources System Project Puts People First
Austin Energy’s Billing System Can’t Light Up
Westinghouse Electric Takes on the Risks of a “Big Bang” Project
NYCAPS and CityTime: A Tale of Two New York City IS Projects

Chapter 15: Managing Global Systems
L’Oreal’s Global Makeover
Hasbro Develops a Global Systems Strategy
CombineNet ASAP Helps Primark Manage Its Global Supply Chain
Sherwin-Williams Paints the World
Preface

We wrote this book for business school students who wanted an in-depth look at how today's business firms use information technologies and systems to achieve corporate objectives. Information systems are one of the major tools available to business managers for achieving operational excellence, developing new products and services, improving decision making, and achieving competitive advantage. Students will find here the most up-to-date and comprehensive overview of information systems used by business firms today.

When interviewing potential employees, business firms often look for new hires who know how to use information systems and technologies for achieving bottom-line business results. Regardless of whether you are an accounting, finance, management, operations management, marketing, or information systems major, the knowledge and information you find in this book will be valuable throughout your business career.

What’s new in this Edition

Currency

The 13th edition features many new opening, closing, and Interactive Session cases. The text, figures, tables, and cases have been updated through November 2012 with the latest sources from industry and MIS research.

New Features

- Chapter-opening cases have been expanded and new case study questions have been added.
- More online cases: MIS Classic Cases, consisting of five outstanding cases from previous editions on companies such as Kmart or Blockbuster/Netflix, will be available on the book’s Web site. In addition, some of the chapter-ending cases from the previous edition (MIS12e) will be available online.
- New Video Cases collection: 30 video cases (2 per chapter) and additional instructional videos covering key concepts and experiences in the MIS world.
- Learning Tracks: over 40 Learning Tracks are for additional coverage of selected topics.

New Topics

- Social Business: Extensive coverage of social business, introduced in Chapter 2 and discussed in throughout the text. Detailed discussions of enterprise (internal corporate) social networking as well as social networking in e-commerce.
- Big Data: Chapter 6 on Databases and Information Management rewritten to provide in-depth coverage of Big Data and new data management
What’s New in MIS

Plenty. In fact, there’s a whole new world of doing business using new technologies for managing and organizing. What makes the MIS field the most exciting area of study in schools of business is the continuous change in technology, management, and business processes. (Chapter 1 describes these changes in more detail.)

A continuing stream of information technology innovations is transforming the traditional business world. Examples include the emergence of cloud computing, the growth of a mobile digital business platform based on smartphones, tablets, and ultrabooks, and not least, the use of social networks by managers to achieve business objectives. Most of these changes have occurred in the last few years. These innovations are enabling entrepreneurs and innovative traditional firms to create new products and services, develop new business models,
and transform the day-to-day conduct of business. In the process, some old businesses, even industries, are being destroyed while new businesses are springing up.

For instance, the rapid growth of online content stores such as iTunes and Amazon, based on cloud storage services—driven by millions of consumers who prefer smartphones and tablet computers as the center of their media world—has forever changed the older business models of distributing music, television, and movies on physical discs, such as CDs and DVDs. Cloud-based content delivered on the Internet is beginning to challenge the dominance of cable television networks for the delivery of television shows.

E-commerce is growing rapidly again following a deep recession, generating over $362 billion in revenues in 2012, and is estimated to grow to over $542 billion in 2016. With nearly 122 million Americans accessing the Internet with their smartphones, mobile commerce in 2012 has grown to $30 billion in a few years, and is growing by double digits each year. Amazon’s revenues grew 41 percent in 2011, despite the recession, while offline retail grew by 5 percent. E-commerce is changing how firms design, produce and deliver their products and services. E-commerce has reinvented itself again, disrupting the traditional marketing and advertising industry and putting major media and content firms in jeopardy. Facebook and other social networking sites such as YouTube, Twitter, and Tumblr, and new graphical social sites such as Pinterest, exemplify the new face of e-commerce in the 21st Century. They sell services. When we think of e-commerce we tend to think of an online store selling physical products. While this iconic vision of e-commerce is still very powerful and the fastest growing form of retail sales in the U.S., growing up alongside is a whole new value stream based on selling services, not goods. It’s a services model of e-commerce. Information systems and technologies are the foundation of this new services-based e-commerce.

Likewise, the management of business firms has changed: With new mobile smartphones, high-speed wireless Wi-Fi networks, and wireless laptop and tablet computers, remote salespeople on the road are only seconds away from their managers’ questions and oversight. Managers on the move are in direct, continuous contact with their employees. The growth of enterprise-wide information systems with extraordinarily rich data means that managers no longer operate in a fog of confusion, but instead have online, nearly instant, access to the really important information they need for accurate and timely decisions. In addition to their public uses on the Web, private social networks, wikis and blogs are becoming important corporate tools for communication, collaboration, and information sharing.

THE 13TH EDITION: THE COMPREHENSIVE SOLUTION FOR THE MIS CURRICULUM

Since its inception, this text has helped to define the MIS course around the globe. This edition continues to be authoritative, but is also more customizable, flexible, and geared to meeting the needs of different colleges, universities, and individual instructors. This book is now part of a complete learning package that includes the core text and an extensive offering of supplemental materials on the Web.

The core text consists of 15 chapters with hands-on projects covering essential topics in MIS. An important part of the core text is the Video Case Study
and Instructional Video package: 30 video case studies (2 per chapter) plus many instructional videos that illustrate business uses of information systems, explain new technologies, and explore concepts. Video cases are keyed to the topics of each chapter.

In addition, for students and instructors who want to go deeper into selected topics, there are over 40 online Learning Tracks that cover a variety of MIS topics in greater depth.

MyMISLab provides more in-depth coverage of chapter topics, career resources, additional case studies, supplementary chapter material, and data files for hands-on projects.

THE CORE TEXT

The core text provides an overview of fundamental MIS concepts using an integrated framework for describing and analyzing information systems. This framework shows information systems composed of management, organization, and technology elements and is reinforced in student projects and case studies.

Chapter Organization

Each chapter contains the following elements:
- A chapter-opening case describing a real-world organization to establish the theme and importance of the chapter
- A diagram analyzing the opening case in terms of the management, organization, and technology model used throughout the text
- A series of learning objectives
- Two Interactive Sessions with Case Study Questions
- A Learning Tracks section identifying supplementary material in MyMISLab
- A Review Summary section keyed to the learning objectives
- A list of key terms that students can use to review concepts
- Review questions for students to test their comprehension of chapter material
- Discussion questions raised by the broader themes of the chapter
- A series of Hands-on MIS Projects consisting of two Management Decision Problems, a hands-on application software project, and a project to develop Internet skills
- A pointer to the chapter’s video cases
- A Collaboration and Teamwork project to develop teamwork and presentation skills, with options for using open source collaboration tools
• A chapter-ending case study for students to learn about how real business firms use information systems, and to apply chapter concepts

**KEY FEATURES**

We have enhanced the text to make it more interactive, leading-edge, and appealing to both students and instructors. The features and learning tools are described in the following sections.

**Business-Driven with Real-World Business Cases and Examples**

The text helps students see the direct connection between information systems and business performance. It describes the main business objectives driving the use of information systems and technologies in corporations all over the world: operational excellence; new products and services; customer and supplier intimacy; improved decision making; competitive advantage; and survival. In-text examples and case studies show students how specific companies use information systems to achieve these objectives.

We use current examples from business and public organizations throughout the text to illustrate the important concepts in each chapter. The case studies describe companies or organizations that are familiar to students, such as Starbucks, Google, Groupon, Facebook, Amazon, L’Oréal, and Procter & Gamble.

**Interactivity**

There’s no better way to learn about MIS than by doing MIS. We provide different kinds of hands-on projects where students can work with real-world business scenarios and data, and learn first hand what MIS is all about. These projects heighten student involvement in this exciting subject.

• **Online Video Case Package.** Students can watch short videos online, either in-class or at home or work, and then apply the concepts of the book to the analysis of the video. Every chapter contains at least two business video cases (30 videos in all) that explain how business firms and managers are using information systems, describe new management practices, and explore concepts discussed in the chapter. Each video case consists of a video about a real-world company, a background text case, and case study questions. These video cases enhance students’ understanding of MIS topics and the relevance of MIS to the business world. In addition, there are many Instructional Videos that describe developments and concepts in MIS keyed to respective chapters.
• Interactive Sessions. Two short cases in each chapter have been redesigned as Interactive Sessions to be used in the classroom (or on Internet discussion boards) to stimulate student interest and active learning. Each case concludes with case study questions. The case study questions provide topics for class discussion, Internet discussion, or written assignments.

Each chapter contains two Interactive Sessions focused on management, organizations, or technology using real-world companies to illustrate chapter concepts and issues.

Case study questions encourage students to apply chapter concepts to real-world companies in class discussions, student presentations, or writing assignments.

Two real-world business scenarios per chapter provide opportunities for students to apply chapter concepts and practice management decision making.

• Hands-on MIS Projects. Every chapter concludes with a Hands-on MIS Projects section containing three types of projects: two Management Decision Problems, a hands-on application software exercise using Microsoft Excel, Access, or Web page and blog creation tools, and a project that develops Internet business skills. A Dirt Bikes USA running case in MyMISLab provides additional hands-on projects for each chapter.

INTERACTIVE SESSION: ORGANIZATIONS

BURTON SNOWBOARDS SPEEDS AHEAD WITH NIMBLE BUSINESS PROCESSES

When we hear "snowboarding," we tend to think of snow-covered slopes, acrobatic jumps, and high-flying entertainment. We don't usually think of improving business process efficiency. But snowboarding is business for Burton Snowboards, an industry pioneer and market leader. Founded in 1977 by Jake Burton Carpenter and headquartered in Burlington, Vermont, Burton designs, manufactures, and markets equipment, clothing, and related accessories for snowboarders. Today, Burton is a global enterprise that serves customers in 27 countries and has offices in Japan, Austria, and throughout the United States.

At its peak, Burton controlled over 40 percent of the U.S. snowboarding market, and it remains the market leader amidst a growing number of competitors. Now, as Burton continues to expand into a global company, it has a new set of problems: improving its systems for inventory, supply chain, purchasing, and customer service. Storing and managing inventory is a difficult problem for Burton, whose inventory changes dramatically depend on product line updates and the time of the year. Burton takes feedback from its SAP Enterprise Resource Planning (ERP) software. Rather than buying new software to solve IT problems, Burton decided that it would explore basic functionalities of SAP ERP software that it had not used yet. Often, Burton could resolve problems this way without adding new layers of complexity to its IT infrastructure, and the company gained proficiency with SAP enterprise software in the process. Burton aims for a standard, traditional version of software whenever possible, realizing that with more bells and whistles comes increased maintenance costs and steeper learning curves to understanding the software.

SAP analysis helped Burton identify the top five transactions that were the most critical to its business operations and that needed optimization from a systems standpoint. Burton had to identify unnecessarily complicated processes, backlogs, and design gaps in the flow of its business processes. For example, the available-to-promise process was taking hours to complete. (Available to promise, in response to customer order inquiries, reports on available quantities of a requested product and delivery due dates.) Burton wanted to...

CASE STUDY QUESTIONS

1. Analyze Burton using the value chain and competitive forces models.

2. Why are the business processes described in this chapter an important source of competitive advantage for Burton?

3. Explain exactly how these process improvements enhance Burton's operational performance and decision making.

Management Decision Problems

1. Dealerships for Subaru and other automobile manufacturers keep records of the mileage of cars they sell and service. Mileage data are used to remind customers of when they need to schedule service appointments, but they are used for other purposes as well. What kinds of decisions does this piece of data support at the local level and at the corporate level? What would happen if this piece of data were erroneous, for example, showing mileage of 130,000 instead of 30,000? How would it affect decision making? Assess its business impact.

2. Applebee's is the largest casual dining chain in the world, with over 1,000 locations throughout the U.S. and also in 20 other countries. The menu features beef, chicken, and pork items, as well as burgers, pasta, and seafood. Applebee’s CEO wants to make the restaurant more profitable by developing menus that are easier to prepare and contain more items that customers want and are willing to pay for despite rising costs for gasoline and agricultural products. How might business intelligence help management implement this strategy? What kinds of data would Applebee’s need to collect? What kinds of reports would be useful to help management make decisions on how to improve menus and profitability?
Each chapter features a project to develop Internet skills for accessing information, conducting research, and performing online calculations and analysis.

- **Collaboration and Teamwork Projects.** Each chapter features a collaborative project that encourages students working in teams to use Google Sites, Google Docs, and other open-source collaboration tools. The first team project in Chapter 1 asks students to build a collaborative Google site.

**Assessment and AACSB Assessment Guidelines**
The Association to Advance Collegiate Schools of Business (AACSB) is a not-for-profit corporation of educational institutions, corporations and other organizations that seeks to improve business education primarily by accrediting university business programs. As a part of its accreditation activities, the AACSB has developed an Assurance of Learning Program designed to ensure that schools do in fact teach students what they promise. Schools are required to state a clear mission, develop a coherent business program, identify student learning objectives, and then prove that students do in fact achieve the objectives.

We have attempted in this book to support AACSB efforts to encourage assessment-based education. On the Laudon Web site is a more inclusive and detailed assessment matrix that identifies the learning objectives of each chapter and points to all the available assessment tools for ensuring students in fact do achieve the learning objectives. Because each school is different and may have different missions and learning objectives, no single document can satisfy all situations. The authors will provide custom advice on how to use this text in their colleges with different missions and assessment needs. Please e-mail the authors or contact your local Pearson Education representative for contact information.
For more information on the AACSB Assurance of Learning Program, and how this text supports assessment-based learning, please visit the Web site for this book.

**Customization and Flexibility: New Learning Track Modules**

Our Learning Tracks feature gives instructors the flexibility to provide in-depth coverage of the topics they choose. There are over 40 Learning Tracks available to instructors and students. A Learning Tracks section at the end of each chapter directs students to short essays or additional chapters in MyMISLab. This supplementary content takes students deeper into MIS topics, concepts and debates; reviews basic technology concepts in hardware, software, database design, telecommunications, and other areas; and provide additional hands-on software instruction. The 13th Edition includes new Learning Tracks on E-Commerce Payment Systems, LAN Topologies, and the Occupational and Career Outlook for Information Systems Majors 2012–2018.

**AUTHOR-CERTIFIED TEST BANK AND SUPPLEMENTS**

- **Author-Certified Test Bank.** The authors have worked closely with skilled test item writers to ensure that higher level cognitive skills are tested. The test bank includes multiple-choice questions on content, but also includes many questions that require analysis, synthesis, and evaluation skills.
- **New Annotated Interactive PowerPoint Lecture Slides.** The authors have prepared a comprehensive collection of over five hundred PowerPoint slides to be used in lectures. Ken Laudon uses many of these slides in his MIS classes and executive education presentations. Each of the slides is annotated with teaching suggestions for asking students questions, developing in-class lists that illustrate key concepts, and recommending other firms as examples in addition to those provided in the text. The annotations are like an Instructor's Manual built into the slides and make it easier to teach the course effectively.

**STUDENT LEARNING-FOCUSED**

Student learning objectives are organized around a set of study questions to focus student attention. Each chapter concludes with a review summary and review questions organized around these study questions.

**MYMISLAB**

MyMISLab is a Web-based assessment and tutorial tool that provides practice and testing while personalizing course content and providing student and class assessment and reporting. Your course is not the same as the course taught down the hall. Now, all the resources that instructors and students need for course success are in one place—flexible and easily organized and adapted for an individual course experience. Visit www.pearsonglobaleditions.com/mymislab to see how you can teach, learn, and experience MIS.

**CAREER RESOURCES**

The Instructor’s Resource section of the Laudon Web site also provides extensive Career Resources, including job-hunting guides and instructions on how to
build a Digital Portfolio demonstrating the business knowledge, application software proficiency, and Internet skills acquired from using the text. The portfolio can be included in a resume or job application or used as a learning assessment tool for instructors.

**INSTRUCTIONAL SUPPORT MATERIALS**

**Instructor Resource Center**
Most of the support materials described in the following sections are conveniently available for adopters on the online Instructor Resource Center (IRC). The IRC includes the Image Library (a very helpful lecture tool), Instructor's Manual, Lecture Notes, Test Item File and TestGen, and PowerPoint slides.

**Image Library**
The Image Library is an impressive resource to help instructors create vibrant lecture presentations. Almost every figure and photo in the text is provided and organized by chapter for convenience. These images and lecture notes can be imported easily into PowerPoint to create new presentations or to add to existing ones.

**Instructor's Manual**
The Instructor's Manual features not only answers to review, discussion, case study, and group project questions, but also in-depth lecture outlines, teaching objectives, key terms, teaching suggestions, and Internet resources.

**Test Item File**
The Test Item File is a comprehensive collection of true-false, multiple-choice, fill-in-the-blank, and essay questions. The questions are rated by difficulty level and the answers are referenced by section. The Test Item File also contains questions tagged to the AACSB learning standards. An electronic version of the Test Item File is also available in TestGen.

**PowerPoint Slides**
Electronic color slides created by the authors are available in PowerPoint. The slides illuminate and build on key concepts in the text.

**Video Cases and Instructional Videos**
Instructors can download the video cases from MyMISLab at www.pearsoneditions.com/mymislab. See page 28 for a list of video cases and instructional videos available at the time of publication.

**Learning Track Modules**
Over 40 Learning Tracks provide additional coverage topics for students and instructors. See page 29 for a list of the Learning Tracks available for this edition.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Video</th>
</tr>
</thead>
</table>
| **Chapter 1: Information Systems In Global Business Today** | Case 1: UPS Global Operations with the DIAD IV  
Case 2: Google: Google Data Center Efficiency Best Practices |
| **Chapter 2: Global E-business and Collaboration** | Case 1: IS in Action: Walmart’s Retail Link Supply Chain  
Case 2: Salesforce.com: The Emerging Social Enterprise  
Case 3: How FedEx Works: Inside the Memphis Super Hub  
Instructional Video 1: US Foodservice Grows Market with Oracle CRM on Demand |
| **Chapter 3: Information Systems, Organizations, and Strategy** | Case 1: National Basketball Association: Competing on Global Delivery With Akamai OS Streaming  
Case 2: IT and Geo-Mapping Help a Small Business Succeed  
Case 3: Materials Handling Equipment Corp: Enterprise Systems Drive Strategy  
Instructional Video 1: SAP BusinessOne ERP: From Orders to Final Delivery and Payment  
Instructional Video 2: IBM Blue Cloud is Ready-to-Use Computing |
| **Chapter 4: Ethical and Social Issues in Information Systems** | Case 1: What Net Neutrality Means For You  
Case 2: Privacy: Social Network Data Mining  
Case 3: Data Mining for Terrorists and Innocents.  
Instructional Video 1: The Right to be Forgotten  
Instructional Video 2: Zappos Working To Correct Online Security Breach  
Instructional Video 3: Meet the Hackers: Anonymous Video Statement on Hacking SONY  
Instructional Video 4: Dick Hardt: Identity 2.0 |
| **Chapter 5: IT Infrastructure: and Emerging Technologies** | Case 1: ESPN: Getting to Extreme Scale On the Web  
Case 2: Salesforce.com: Managing by Smartphone  
Case 3: Hudson’s Bay Company and IBM: Virtual Blade Platform  
Instructional Video 1: Google and IBM Produce Cloud Computing  
Instructional Video 2: IBM Blue Cloud is Ready-to-Use Computing |
| **Chapter 6: Foundations of Business Intelligence: Databases and Information Management** | Case 1: Dubuque Uses Cloud Computing and Sensors to Build a Smarter City  
Case 2: Data Warehousing at REI: Understanding the Customer  
Case 3: Maruti Suzuki Business Intelligence and Enterprise Databases |
| **Chapter 7: Telecommunications, the Internet, and Wireless Technology** | Case 1: Telepresence Moves Out of the Boardroom and Into the Field  
Case 2: Unified Communications Systems: Virtual Collaboration With Lotus Sametime  
Instructional Video 1: CNN Telepresence |
| **Chapter 8: Securing Information Systems** | Case 1: Stuxnet and Cyber Warfare  
Case 2: Cyber Espionage: The Chinese Threat  
Case 3: UBS Access Key: IBM Zone Trusted Information Channel  
Instructional Video 1: Sony PlayStation Hacked; Data Stolen from 77 Million Users  
Instructional Video 2: Zappos Working To Correct Online Security Breach  
Instructional Video 3: Meet the Hackers: Anonymous Video Statement on Hacking SONY  
Instructional Video 4: Dick Hardt: Identity 2.0 |
| **Chapter 9: Achieving Operational Excellence and Customer Intimacy: Enterprise Applications** | Case 1: Workday: Enterprise Software as a Service  
Case 2: Evolution Homecare Manages Patients with Microsoft CRM  
Case 3: Sinosteel Strengthens Business Management with ERP Applications  
Instructional Video 1: Zara’s: Wearing Today’s Fashions With Supply Chain Management |
| **Chapter 10: E-commerce: Digital Markets, Digital Goods** | Case 1: Deals Galore at Groupon  
Case 2: Etsy: A Marketplace and Community  
Case 3: Ford AutoXchange B2B Marketplace |
| **Chapter 11: Managing Knowledge** | Case 1: How IBM’s Watson Became a Jeopardy Champion  
Case 2: Alfresco: Open Source Document Management and Collaboration  
Case 3: L’Oréal: Knowledge Management Using Microsoft SharePoint  
Instructional Video 1: Analyzing Big Data: IBM Watson: Watson After Jeopardy  
Instructional Video 2: Teamwork and Collaboration: John Chambers on Collaboration vs. Command and Control in Web 2.0  
Instructional Video 3: FreshDirect’s Secret Sauce: Customer Data From the Website  
Instructional Video 4: Oracle’s Mobile Business Intelligence App |
| **Chapter 12: Enhancing Decision Making** | Case 1: FreshDirect Uses Business Intelligence to Manage Its Online Grocery  
Case 2: Business Intelligence: Decision Making at the Cincinnati Zoo |
| **Chapter 13: Building Information Systems** | Case 1: IBM: SaaS Business Process Management  
Case 2: IBM Helps the City of Madrid With Real-Time BPM Software  
Instructional Video 1: IBM BPM Business Process Management Customer Story: Besthome Store  
Instructional Video 2: Workflow Management: Visualized |
| **Chapter 14: Managing Projects** | Case 1: Blue Cross Blue Shield: Smarter Computing Project  
Case 2: NASA: Project Management Challenges  
Instructional Video: Software Project Management in 15 Minutes |
| **Chapter 15: Managing Global Systems** | Case 1: Daum Runs Oracle Apps on Linux  
Case 2: Lean Manufacturing and Global ERP: Humanetics and Global Shop  
Case 3: Monsanto, Cisco ANS, and Microsoft SharePoint  
Instructional Video 1: UPS Global Operations with the DIAD IV  
Instructional Video 2: Google: Google Data Center Efficiency Best Practices  
Instructional Video 3: SAP BusinessOne ERP: From Orders to Final Delivery and Payment  
Instructional Video 4: IBM Blue Cloud is Ready-to-Use Computing |
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Learning Track Modules</th>
</tr>
</thead>
</table>
| Chapter 1: Information Systems in Global Business Today | How Much Does IT Matter?  
Information Systems and Your Career  
The Mobile Digital Platform |
| Chapter 2: Global E-Business and Collaboration | Systems From a Functional Perspective  
IT Enables Collaboration and Teamwork  
Challenges of Using Business Information Systems  
Organizing the Information Systems Function  
Occupational and Career Outlook for Information Systems Majors 2012-2018 |
| Chapter 3: Information Systems, Organizations, and Strategy | The Changing Business Environment for IT |
| Chapter 4: Ethical and Social Issues in Information Systems | Developing a Corporate Code of Ethics for IT |
| Chapter 5: IT Infrastructure and Emerging Technologies | How Computer Hardware Works  
How Computer Software Works  
Service Level Agreements  
The Open Source Software Initiative  
Comparing Stages in IT Infrastructure Evolution  
Cloud Computing |
| Chapter 6: Foundations of Business Intelligence: Databases and Information Management | Database Design, Normalization, and Entity-Relationship Diagramming  
Introduction to SQL  
Hierarchical and Network Data Models |
| Chapter 7: Telecommunications, the Internet, and Wireless Technology | LAN Topologies  
Broadband Network Services and Technologies  
Cellular System Generations  
Wireless Applications for Customer Relationship Management, Supply Chain Management, and Healthcare  
Introduction to Web 2.0 |
| Chapter 8: Securing Information Systems | The Booming Job Market in IT Security  
The Sarbanes-Oxley Act  
Computer Forensics  
General and Application Controls for Information Systems  
Management Challenges of Security and Control  
Software Vulnerability and Reliability |
| Chapter 9: Achieving Operational Excellence and Customer Intimacy: Enterprise Applications | SAP Business Process Map  
Business Processes in Supply Chain Management and Supply Chain Metrics  
Best-Practice Business Processes in CRM Software |
Build an E-Commerce Business Plan  
Hot New Careers in E-Commerce  
E-commerce Payment Systems |
| Chapter 11: Managing Knowledge | Challenges of Knowledge Management Systems |
| Chapter 12: Enhancing Decision Making | Building and Using Pivot Tables |
| Chapter 13: Building Information Systems | Unified Modeling Language  
Primer on Business Process Design and Documentation  
Primer on Business Process Management |
| Chapter 14: Managing Projects | Capital Budgeting Methods for Information Systems Investments  
Information Technology Investments and Productivity  
Enterprise Analysis (Business Systems Planning) and Critical Success Factors |
ACKNOWLEDGEMENTS

The production of any book involves valued contributions from a number of persons. We would like to thank all of our editors for encouragement, insight, and strong support for many years. We thank Bob Horan for guiding the development of this edition and Karalyn Holland for her role in managing the project.

Our special thanks go to our supplement authors for their work. We are indebted to William Anderson for his assistance in the writing and production of the text and to Megan Miller for her help during production. We thank Diana R. Craig for her assistance with database and software topics.

Special thanks to my colleagues at the Stern School of Business at New York University; to Professor Lawrence Andrew of Western Illinois University; to Professor Detlef Schoder of the University of Cologne; to Professor Walter Brenner of the University of St. Gallen; to Professor Lutz Kolbe of the University of Gottingen; to Professor Donald Marchand of the International Institute for Management Development; and to Professor Daniel Botha of Stellenbosch University who provided additional suggestions for improvement. Thank you to Professor Ken Kraemer, University of California at Irvine, and Professor John King, University of Michigan, for more than a decade’s long discussion of information systems and organizations. And a special remembrance and dedication to Professor Rob Kling, University of Indiana, for being my friend and colleague over so many years.

We also want to especially thank all our reviewers whose suggestions helped improve our texts. Reviewers for this edition include the following:

Brad Allen, Plymouth State University
Anne Formalarie, Plymouth State University
Bin Gu, University of Texas – Austin
Essia Hamouda, University of California – Riverside
Kimberly L. Merritt, Oklahoma Christian University
James W. Miller, Dominican University
Fiona Nah, University of Nebraska – Lincoln
Thomas Schambach, Illinois State University

Pearson gratefully acknowledges and thanks the following people for their work on the Global Edition:

Global Edition Contributors

Ahmed Elragal, German University in Cairo
Niveen Ezzat, Cairo University
Bee Hua Goh, National University of Singapore
Jonas Hedman, Copenhagen Business School
Ari Heiskanen, University of Oulu
Stefan Henningsson, Copenhagen Business School
Andy Jones, Staffordshire University
Faouzi Kamoun, Zayed University
Patricia Lago, VU University Amsterdam
Lesley Land, University of New South Wales
Daniel Ortiz-Arroyo, Aalborg University
Neerja Sethi, Nanyang Technological University
Vijay Sethi Nanyang, Technological University
Upasana Singh, University of KwaZulu-Natal
Damian A. Tamburri, VU University Amsterdam
Robert Manderson, University of Roehampton

Global Edition Reviewers

James Collins, Aalto University School of Business
Navonil Mustafee, Swansea University
Karsten Boye Rasmussen, University of Southern Denmark
Abdul Razak bin Rahmat, Universiti Utara Malaysia
Bernd Schenk, University of Liechtenstein

K.C.L.
J.P.L.
Part One introduces the major themes of this book, raising a series of important questions: What is an information system and what are its management, organization, and technology dimensions? Why are information systems so essential in businesses today? Why are systems for collaboration and social business so important? How can information systems help businesses become more competitive? What broader ethical and social issues are raised by widespread use of information systems?
Chapter 1

Information Systems in Global Business Today

LEARNING OBJECTIVES

After reading this chapter, you will be able to answer the following questions:

1. How are information systems transforming business, and what is their relationship to globalization?
2. Why are information systems so essential for running and managing a business today?
3. What exactly is an information system? How does it work? What are its management, organization, and technology components?
4. What are complementary assets? Why are complementary assets essential for ensuring that information systems provide genuine value for an organization?
5. What academic disciplines are used to study information systems? How does each contribute to an understanding of information systems? What is a sociotechnical systems perspective?

CHAPTER OUTLINE

1.1 THE ROLE OF INFORMATION SYSTEMS IN BUSINESS TODAY
How Information Systems Are Transforming Business
What’s New in Management Information Systems?
Globalization Challenges and Opportunities: A Flattened World
The Emerging Digital Firm
Strategic Business Objectives of Information Systems

1.2 PERSPECTIVES ON INFORMATION SYSTEMS
What Is an Information System?
Dimensions of Information Systems
It Isn’t Just Technology: A Business Perspective on Information Systems
Complementary Assets: Organizational Capital and the Right Business Model

1.3 CONTEMPORARY APPROACHES TO INFORMATION SYSTEMS
Technical Approach
Behavioral Approach
Approach of This Text: Sociotechnical Systems

LEARNING TRACKS MODULES
How Much Does IT Matter?
Information Systems and Your Career
The Mobile Digital Platform

Interactive Sessions:
Running the Business from the Palm of Your Hand
UPS Competes Globally with Information Technology
Finland is a leader in the timber machine industry. The Finnish company Ponsse is one of the largest manufacturers of rubber-wheel cut-to-length forest machines. The timber industry uses two cutting methods: the cut-to-length method and the tree-length method.

With the cut-to-length method, tree trunks are cut in the forest into various sized logs for different uses, such as saw logs or pulpwood. With the tree-length method, trunks are cut in the forest and transported to the mill whole or almost whole. At the mill, trunk pieces are separated according to use. Approximately 45 percent of the world's harvest is harvested with cut-to-length machines, like those produced by Ponsse, and 35 percent of this yield is harvested using the cut-to-length method.

Ponsse's main products are harvesters, harvester cutting heads, forwarders, and cranes. A harvester is a tractor-like machine used for cutting logs. It has a crane with a cutting head, which grasps the tree at the stem and uses its saw to make the first cut. Then the head moves the cut tree trunk in its "jaws" and finds the next cutting points. During the movement, the cutting head removes the branches of the tree. A forwarder is a special forest tractor with a crane that is designed for efficient trunk collection and transportation.

Ponsse also offers its clients an integrated set of sophisticated information systems. "Ponsse wants to know the business of its clients, because it sells forest machines and information systems to all partners in the logistic chain," says Information Systems Product Manager Hanna Vilkman. These information systems support the entire wood procurement chain. The first step in this chain is to estimate the demand for different types and sizes of timber. Typically, this is done in the field office of a wood purchasing organization. With the help of information systems, a cutting plan is created that will optimize the cutting yield for a particular logging area. Data on similar areas that were logged previously are used in order to optimize the cutting plan. A map of the logging area is also produced, as well as working instructions for the harvester driver. The map describes the borders of the logging area as well as areas to be protected. Should a single tree need to be left uncut, it is marked manually with a plastic stripe.

The harvester driver gets the map and working instructions via a dedicated e-mail system that transfers data between the harvester's information system and the wood purchase organization. Instructions and maps are presented on a display located in the harvester cabin. A special feature in the harvester's information system enables it to optimize the cutting of a log into pieces during the cutting process. This means that the system is able to calculate the optimal cutting places when the log is moving through the cutting head, after being first cut from the stem. After the trees have been cut according to the instructions, the driver sends the harvest information to the field office via a dedicated e-mail system. The assortment typically contains 10 different types of cut logs of five different
lengths. The harvester marks each type with a different color spot in order to help the forwarder to sort each log into its correct pile.

Forwarders (special forest tractors) use a map application and GPS positioning to transport the cut logs from the forest to the roadside. This facilitates work and improves safety, because the system warns the operator when the machine is approaching dangerous hazards, such as power lines. Piles of cut logs are then transported from the roadside to factories by trucks that also use information systems, for example, to find optimal routes.

Drivers of harvesters and foresters can learn the skills required to operate their machines by using 3D simulators that simulate real-world conditions. A driver can sit in a simulated machine and control the machine using the levers, just like they would in the field. The forest landscape is reflected as a 3D image on a canvas, and the operator can move freely within the harvesting area and view the forest from different angles.


Case contributed by Ari Heiskanen, University of Oulu

Ponsse has well-functioning, cooperative information systems that link together the various parties of the wood production and procurement chain, such as the forest owner, the wood-purchasing organization, the forest machine owner and operator, and the manufacturing plant that uses the wood cut from the forest. The systems benefit all parties. Some of the information systems provided by Ponsse are integral parts of forest machinery, like those embedded in harvesters and forwarders; others are products that can be purchased. Information flows between these parties automatically. The availability of these kinds of information systems boosts the selling of Ponsse’s main products, the forest machines. The harvester information system guides the machine and gathers exact information on how the machine is being operated and the details of the yield. The company that owns the forest machine can monitor the machine’s utilization and the distribution of working hours and sequences, for example. The harvester driver can adjust the harvester operating settings according to his or her own preferences. The forest field office gets information from several sources, such as harvester operations in the forest, the trucks, or the factory. All of this makes the management of the various phases of the wood procurement chain more efficient. Harvester and forwarder information systems also enhance the ecological treatment of forests by highlighting areas to be avoided.
1.1 THE ROLE OF INFORMATION SYSTEMS IN BUSINESS TODAY

It’s not business as usual in America anymore, or the rest of the global economy. In 2012, American businesses will spend over $540 billion on information systems hardware, software, and telecommunications equipment. In addition, they will spend another $650 billion on business and management consulting and services—much of which involves redesigning firms’ business operations to take advantage of these new technologies. Figure 1.1 shows that between 1980 and 2011, private business investment in information technology consisting of hardware, software, and communications equipment grew from 32 percent to 52 percent of all invested capital.

As managers, most of you will work for firms that are intensively using information systems and making large investments in information technology. You will certainly want to know how to invest this money wisely. If you make wise choices, your firm can outperform competitors. If you make poor choices, you will be wasting valuable capital. This book is dedicated to helping you make wise decisions about information technology and information systems.

HOW INFORMATION SYSTEMS ARE TRANSFORMING BUSINESS

You can see the results of this massive spending around you every day by observing how people conduct business. More wireless cell phone accounts were opened in 2012 than telephone landlines installed. Smartphones, texting, e-mail, and online conferencing have all become essential tools of business. One hundred twenty-two million people in the United States access the Internet using mobile devices in 2012, which is half of the total Internet user population.

FIGURE 1.1 INFORMATION TECHNOLOGY CAPITAL INVESTMENT

Information technology capital investment, defined as hardware, software, and communications equipment, grew from 32 percent to 52 percent of all invested capital between 1980 and 2011.

There are 242 million cell phone subscribers in the United States, and nearly 5 billion worldwide (ITU, 2011).

By June 2012, more than 104 million businesses worldwide had dot-com Internet sites registered (Whois, 2012). Today, 184 million Americans shop online, and 150 million have purchased online. Every day about 67 million Americans go online to research a product or service.

In 2012, FedEx moved over 9 million packages daily worldwide (6 million in the United States), mostly overnight, and the United Parcel Service (UPS) moved over 15 million packages daily worldwide. Businesses sought to sense and respond to rapidly changing customer demand, reduce inventories to the lowest possible levels, and achieve higher levels of operational efficiency. Supply chains have become more fast-paced, with companies of all sizes depending on just-in-time inventory to reduce their overhead costs and get to market faster.

As newspaper readership continues to decline, more than 150 million people read a newspaper online, and millions more read other news sites. About 67 million people watch a video online every day, 76 million read a blog, and 26 million post to blogs, creating an explosion of new writers and new forms of customer feedback that did not exist five years ago (Pew, 2012). Social networking site Facebook attracted 162 million monthly visitors in 2012 in the United States, and over 900 million worldwide. Google+ has attracted over 100 million users in the United States. Businesses are starting to use social networking tools to connect their employees, customers, and managers worldwide. Many Fortune 500 companies now have Facebook pages, Twitter accounts, and Tumblr sites.

Despite the economic slowdown, e-commerce and Internet advertising continue to expand. Google’s online ad revenues surpassed $36 billion in 2011, and Internet advertising continues to grow at more than 10 percent a year, reaching more than $39.5 billion in revenues in 2012.

New federal security and accounting laws, requiring many businesses to keep e-mail messages for five years, coupled with existing occupational and health laws requiring firms to store employee chemical exposure data for up to 60 years, are spurring the annual growth of digital information at the estimated rate of 5 exabytes annually, equivalent to 37,000 new Libraries of Congress.

**WHAT’S NEW IN MANAGEMENT INFORMATION SYSTEMS?**

Lots! What makes management information systems the most exciting topic in business is the continual change in technology, management use of the technology, and the impact on business success. New businesses and industries appear, old ones decline, and successful firms are those that learn how to use the new technologies. Table 1.1 summarizes the major new themes in business uses of information systems. These themes will appear throughout the book in all the chapters, so it might be a good idea to take some time now and discuss these with your professor and other students.

There are three interrelated changes in the technology area: (1) the emerging mobile digital platform, (2) the growing business use of “big data,” and (3) the growth in “cloud computing,” where more and more business software runs over the Internet.

IPhones, iPads, BlackBerrys, and Android tablets and smartphones are not just gadgets or entertainment outlets. They represent new emerging computing platforms based on an array of new hardware and software technologies.
## TABLE 1.1 WHAT’S NEW IN MIS

<table>
<thead>
<tr>
<th>CHANGE</th>
<th>BUSINESS IMPACT</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>TECHNOLOGY</strong></td>
<td></td>
</tr>
<tr>
<td>Cloud computing platform emerges as a major business area of innovation</td>
<td>A flexible collection of computers on the Internet begins to perform tasks traditionally performed on corporate computers. Major business applications are delivered online as an Internet service (Software as a Service, or SaaS).</td>
</tr>
<tr>
<td>Big data</td>
<td>Businesses look for insights from huge volumes of data from Web traffic, e-mail messages, social media content, and machines (sensors) that require new data management tools to capture, store, and analyze.</td>
</tr>
<tr>
<td>A mobile digital platform emerges to compete with the PC as a business system</td>
<td>The Apple iPhone and Android mobile devices are able to download hundreds of thousands of applications to support collaboration, location-based services, and communication with colleagues. Small tablet computers, including the iPad, Google Nexus, and Kindle Fire, challenge conventional laptops as platforms for consumer and corporate computing.</td>
</tr>
<tr>
<td><strong>MANAGEMENT</strong></td>
<td></td>
</tr>
<tr>
<td>Managers adopt online collaboration and social networking software to improve coordination, collaboration, and knowledge sharing</td>
<td>Google Apps, Google Sites, Microsoft Windows SharePoint Services, and IBM Lotus Connections are used by over 100 million business professionals worldwide to support blogs, project management, online meetings, personal profiles, social bookmarks, and online communities.</td>
</tr>
<tr>
<td>Business intelligence applications accelerate</td>
<td>More powerful data analytics and interactive dashboards provide real-time performance information to managers to enhance decision making.</td>
</tr>
<tr>
<td>Virtual meetings proliferate</td>
<td>Managers adopt telepresence videoconferencing and Web conferencing technologies to reduce travel time, and cost, while improving collaboration and decision making.</td>
</tr>
<tr>
<td><strong>ORGANIZATIONS</strong></td>
<td></td>
</tr>
<tr>
<td>Social business</td>
<td>Businesses use social networking platforms, including Facebook, Twitter, and internal corporate social tools, to deepen interactions with employees, customers, and suppliers. Employees use blogs, wikis, e-mail texting, and messaging to interact in online communities.</td>
</tr>
<tr>
<td>Telework gains momentum in the workplace</td>
<td>The Internet, wireless laptops, smartphones, and tablet computers make it possible for growing numbers of people to work away from the traditional office. Fifty-five percent of U.S. businesses have some form of remote work program.</td>
</tr>
<tr>
<td>Co-creation of business value</td>
<td>Sources of business value shift from products to solutions and experiences, and from internal sources to networks of suppliers and collaboration with customers. Supply chains and product development become more global and collaborative; customer interactions help firms define new products and services.</td>
</tr>
</tbody>
</table>

More and more business computing is moving from PCs and desktop machines to these mobile devices. Managers are increasingly using these devices to coordinate work, communicate with employees, and provide information for decision making. We call these developments the “emerging mobile digital platform.”
Managers routinely use online collaboration and social technologies in order to make better, faster decisions. As management behavior changes, how work gets organized, coordinated, and measured also changes. By connecting employees working on teams and projects, the social network is where work gets done, where plans are executed, and where managers manage. Collaboration spaces are where employees meet one another—even when they are separated by continents and time zones.

The strength of cloud computing and the growth of the mobile digital platform allow organizations to rely more on telework, remote work, and distributed decision making. This same platform means firms can outsource more work, and rely on markets (rather than employees) to build value. It also means that firms can collaborate with suppliers and customers to create new products, or make existing products more efficiently.

You can see some of these trends at work in the Interactive Session on Management. Millions of managers rely heavily on the mobile digital platform to coordinate suppliers and shipments, satisfy customers, and manage their employees. A business day without these mobile devices or Internet access would be unthinkable. As you read this case, note how the emerging mobile platform greatly enhances the accuracy, speed, and richness of decision making.

GLOBALIZATION CHALLENGES AND OPPORTUNITIES: A FLATTENED WORLD

In 1492, Columbus reaffirmed what astronomers were long saying: the world was round and the seas could be safely sailed. As it turned out, the world was populated by peoples and languages living in isolation from one another, with great disparities in economic and scientific development. The world trade that ensued after Columbus's voyages has brought these peoples and cultures closer. The “industrial revolution” was really a world-wide phenomenon energized by expansion of trade among nations.

In 2005, journalist Thomas Friedman wrote an influential book declaring the world was now “flat,” by which he meant that the Internet and global communications had greatly reduced the economic and cultural advantages of developed countries. Friedman argued that the U.S. and European countries were in a fight for their economic lives, competing for jobs, markets, resources, and even ideas with highly educated, motivated populations in low-wage areas in the less developed world (Friedman, 2007). This “globalization” presents both challenges and opportunities for business firms.

A growing percentage of the economy of the United States and other advanced industrial countries in Europe and Asia depends on imports and exports. In 2012, more than 33 percent of the U.S. economy resulted from foreign trade, both imports and exports. In Europe and Asia, the number exceeded 50 percent. Many Fortune 500 U.S. firms derive half their revenues from foreign operations. For instance, 85 percent of Intel's revenues in 2011 came from overseas sales of its microprocessors. Eighty percent of the PCs manufactured in China use American-made Intel or Advanced Micro Design (AMD) chips.

It’s not just goods that move across borders. So too do jobs, some of them high-level jobs that pay well and require a college degree. In the past decade, the United States lost several million manufacturing jobs to offshore, low-wage
Can you run your company from the palm of your hand? Perhaps not entirely, but there are many functions today that can be performed using an iPhone, iPad, BlackBerry, or other mobile handheld device.

The BlackBerry used to be the favorite mobile handheld for business because it was optimized for e-mail and messaging, with strong security and tools for accessing internal corporate systems. Now that's changing. Companies large and small are starting to deploy Apple’s iPhone and iPad as well as Android mobile devices to conduct more of their work. They are enhancing their security systems so that mobile users can remotely accessing proprietary corporate resources with confidence.

For some, these handhelds have become indispensable. Eric Jackson is a champion kayaker who spends half of each year following competitions and events throughout North America. He’s also president of Jackson Kayak, the leading whitewater kayak manufacturer. It’s essential that he participate in athletic events, monitor industry trends in the field, and meet directly with dealers and customers. Jackson's strong customer focus has helped the company expand successfully worldwide, with distributors on six continents. With the iPhone and iPad, Jackson claims he can run the entire 120-person company from afar.

Jackson's Wi-Fi-equipped RV connects wirelessly to the company headquarters in Sparta, Tennessee. When Jackson's not on Wi-Fi, he uses his iPad 3G cellular connection. The iPad gives him instant access to his entire operation, so he can analyze customer data, refresh Web site content, or approve new designs. Jackson's iPad includes calendars, e-mail, contact management, and the ability to create and edit documents, spreadsheets, and presentations—all the tools this executive needs to communicate with the home office, dealers, and customers.

Back at the shop, Jackson Kayak's managers and employees find iPad and iPhone equally invaluable. In the factory, Chief Operations Officer John Ratliff can compare Jackson Kayak’s manufacturing equipment side-by-side with images of replacement parts on the iPad to make sure he’s getting the correct pieces. The iPhone and iPad have become so indispensable that the company outfitted its entire workforce, from customer service, to design, to quality control, with iPhones. Many have iPads as well.

Using handhelds to run the business is not limited to small companies. General Electric (GE) is one of the world's largest companies, producing aircraft engines, locomotives and other transportation equipment, kitchen and laundry appliances, lighting, electric distribution and control equipment, generators and turbines, and medical imaging equipment. GE is also a leading provider of financial services, aviation, clean energy, media, and health care technology. This giant multinational was an early adopter of mobile technology. GE employees use their iPads to access e-mail, contacts, documents, and electronic presentations. GE’s Mobile Center of Excellence has developed dozens of iPhone and iPad applications, including industry-specific diagnostic and monitoring tools and business intelligence tools that help decision makers find patterns and trends in large volumes of data. The company’s Transformer Monitoring app helps manage gas turbine inventory and electronic transformers throughout the world, with the ability to zoom in from a global map to a specific transformer and read all of the key performance indicators. A PDS Movement Planner lets service personnel monitor railway tracks and obtain diagnostic information on locomotives.

With operations in 60 countries, Dow Corning offers more than 7,000 products and services for consumer and industrial applications, from adhesives to lubricants, delivered as fluids, solids, gels, and powders. The Roambi Visualizer app lets Dow Corning executives use their iPhones to quickly view and analyze real-time data from their core corporate system, including sales figures, trends, and projections. It presents managers with simple, intuitive dashboards of complex data. According to Executive Vice President and Chief Financial Officer Don Sheets, in 15 seconds he can get a sense of whether there’s a financial performance issue he needs to get involved with.

Dow Corning’s Analytics App for the iPhone monitors Web site traffic and online sales for the company’s XIAMETER brand of standard silicone products. Analytics App interfaces with Google Analytics. When Dow Corning rolls out XIAMETER Web sites across the globe, executives can monitor
what content is and isn’t being used whether they are home, traveling, or at the office.

Sunbelt Rentals, based in Fort Mill, South Carolina, is one of the largest equipment rental companies in the United States, with a $2 billion inventory of rental equipment. More than 1,200 company employees, including sales staff, field personnel, and executives, are equipped with iPhones to interact with contacts and stay abreast of calendar events. In addition to using iPhones for e-mail, scheduling, and contact management, Sunbelt deployed a custom application called Mobile SalesPro, which ties multiple systems and databases into a single package for the sales team.

This application connects the corporate point-of-sale system, inventory control and management system, and enterprise system, which integrates data from many different business functions. Users are able to share sales quotes based on the most up-to-date information on rental rates and equipment availability. With this application, Sunbelt’s sales team can respond immediately to customer requests while they are at a job site.


CASE STUDY QUESTIONS

1. What kinds of applications are described here? What business functions do they support? How do they improve operational efficiency and decision making?
2. Identify the problems that businesses in this case study solved by using mobile digital devices.
3. What kinds of businesses are most likely to benefit from equipping their employees with mobile digital devices such as iPhones and iPads?
4. One company deploying iPhones has said: The iPhone is not a game changer, it’s an industry changer. It changes the way that you can interact with your customers and with your suppliers. Discuss the implications of this statement.

iPhone and iPad Business Applications:
1. Salesforce Mobile
2. Cisco WebEx
3. iSchedule
4. iWork
5. Documents To Go
6. PDF Reader Pro
7. BizXpenseTracker
8. Dropbox

Whether it’s attending an online meeting, checking orders, working with files and documents, or obtaining business intelligence, Apple’s iPhone and iPad offer unlimited possibilities for business users. Both devices have a stunning multitouch display, full Internet browsing, digital camera, and capabilities for messaging, voice transmission, and document management. These features make each an all-purpose platform for mobile computing.
producers. But manufacturing is now a very small part of U.S. employment (less than 12 percent and declining). In a normal year, about 300,000 service jobs move offshore to lower wage countries. Many of the jobs are in less-skilled information system occupations, but some are “tradable service” jobs in architecture, financial services, customer call centers, consulting, engineering, and even radiology.

On the plus side, the U.S. economy creates over 3.5 million new jobs in a normal, non-recessionary year. However, only 1.1 million private sector jobs were created due to slow recovery in 2011. Employment in information systems and the other service occupations is expanding, and wages are stable. Outsourcing has actually accelerated the development of new systems in the United States and worldwide.

The challenge for you as a business student is to develop high-level skills through education and on-the-job experience that cannot be outsourced. The challenge for your business is to avoid markets for goods and services that can be produced offshore much less expensively. The opportunities are equally immense. Throughout this book, you will find examples of companies and individuals who either failed or succeeded in using information systems to adapt to this new global environment.

What does globalization have to do with management information systems? That’s simple: everything. The emergence of the Internet into a full-blown international communications system has drastically reduced the costs of operating and transacting on a global scale. Communication between a factory floor in Shanghai and a distribution center in Rapid Falls, South Dakota, is now instant and virtually free. Customers can now shop in a worldwide marketplace, obtaining price and quality information reliably 24 hours a day. Firms producing goods and services on a global scale achieve extraordinary cost reductions by finding low-cost suppliers and managing production facilities in other countries. Internet service firms, such as Google and eBay, are able to replicate their business models and services in multiple countries without having to redesign their expensive fixed-cost information systems infrastructure. Half of the revenue of eBay (as well as General Motors) in 2011 will originate outside the United States. Briefly, information systems enable globalization.

THE EMERGING DIGITAL FIRM

All of the changes we have just described, coupled with equally significant organizational redesign, have created the conditions for a fully digital firm. A digital firm can be defined along several dimensions. A digital firm is one in which nearly all of the organization's significant business relationships with customers, suppliers, and employees are digitally enabled and mediated. Core business processes are accomplished through digital networks spanning the entire organization or linking multiple organizations.

Business processes refer to the set of logically related tasks and behaviors that organizations develop over time to produce specific business results and the unique manner in which these activities are organized and coordinated. Developing a new product, generating and fulfilling an order, creating a marketing plan, and hiring an employee are examples of business processes, and the ways organizations accomplish their business processes can be a source of competitive strength. (A detailed discussion of business processes can be found in Chapter 2.)
Key corporate assets—intellectual property, core competencies, and financial and human assets—are managed through digital means. In a digital firm, any piece of information required to support key business decisions is available at any time and anywhere in the firm.

Digital firms sense and respond to their environments far more rapidly than traditional firms, giving them more flexibility to survive in turbulent times. Digital firms offer extraordinary opportunities for more flexible global organization and management. In digital firms, both time shifting and space shifting are the norm. Time shifting refers to business being conducted continuously, 24/7, rather than in narrow “work day” time bands of 9 a.m. to 5 p.m. Space shifting means that work takes place in a global workshop, as well as within national boundaries. Work is accomplished physically wherever in the world it is best accomplished.

Many firms, such as Cisco Systems, 3M, and IBM, are close to becoming digital firms, using the Internet to drive every aspect of their business. Most other companies are not fully digital, but they are moving toward close digital integration with suppliers, customers, and employees. Many firms, for example, are replacing traditional face-to-face meetings with “virtual” meetings using videoconferencing and Web conferencing technology. (See Chapter 2.)

**STRATEGIC BUSINESS OBJECTIVES OF INFORMATION SYSTEMS**

What makes information systems so essential today? Why are businesses investing so much in information systems and technologies? In the United States, more than 21 million managers and 154 million workers in the labor force rely on information systems to conduct business. Information systems are essential for conducting day-to-day business in the United States and most other advanced countries, as well as achieving strategic business objectives.

Entire sectors of the economy are nearly inconceivable without substantial investments in information systems. E-commerce firms such as Amazon, eBay, Google, and E*Trade simply would not exist. Today’s service industries—finance, insurance, and real estate, as well as personal services such as travel, medicine, and education—could not operate without information systems. Similarly, retail firms such as Walmart and Sears and manufacturing firms such as General Motors and General Electric require information systems to survive and prosper. Just as offices, telephones, filing cabinets, and efficient tall buildings with elevators were once the foundations of business in the twentieth century, information technology is a foundation for business in the twenty-first century.

There is a growing interdependence between a firm’s ability to use information technology and its ability to implement corporate strategies and achieve corporate goals (see Figure 1.2). What a business would like to do in five years often depends on what its systems will be able to do. Increasing market share, becoming the high-quality or low-cost producer, developing new products, and increasing employee productivity depend more and more on the kinds and quality of information systems in the organization. The more you understand about this relationship, the more valuable you will be as a manager.

Specifically, business firms invest heavily in information systems to achieve six strategic business objectives: operational excellence; new products, services, and business models; customer and supplier intimacy; improved decision making; competitive advantage; and survival.
Operational Excellence

Businesses continuously seek to improve the efficiency of their operations in order to achieve higher profitability. Information systems and technologies are some of the most important tools available to managers for achieving higher levels of efficiency and productivity in business operations, especially when coupled with changes in business practices and management behavior.

Walmart, the largest retailer on earth, exemplifies the power of information systems coupled with brilliant business practices and supportive management to achieve world-class operational efficiency. In fiscal year 2012, Walmart achieved $460 billion in sales—nearly one-tenth of retail sales in the United States—in large part because of its Retail Link system, which digitally links its suppliers to every one of Walmart's stores. As soon as a customer purchases an item, the supplier monitoring the item knows to ship a replacement to the shelf. Walmart is the most efficient retail store in the industry, achieving sales of more than $28 per square foot, compared to its closest competitor, Target, at $23 a square foot. Other retail firms producing less than $12 a square foot.

New Products, Services, and Business Models

Information systems and technologies are a major enabling tool for firms to create new products and services, as well as entirely new business models. A business model describes how a company produces, delivers, and sells a product or service to create wealth.

Today's music industry is vastly different from the industry a decade ago. Apple Inc. transformed an old business model of music distribution based on vinyl records, tapes, and CDs into an online, legal distribution model based on its own iPod technology platform. Apple has prospered from a continuing stream of iPod innovations, including the iTunes music service, the iPad, and the iPhone.
Customer and Supplier Intimacy

When a business really knows its customers, and serves them well, the customers generally respond by returning and purchasing more. This raises revenues and profits. Likewise with suppliers: the more a business engages its suppliers, the better the suppliers can provide vital inputs. This lowers costs. How to really know your customers, or suppliers, is a central problem for businesses with millions of offline and online customers.

The Mandarin Oriental in Manhattan and other high-end hotels exemplify the use of information systems and technologies to achieve customer intimacy. These hotels use computers to keep track of guests' preferences, such as their preferred room temperature, check-in time, frequently dialed telephone numbers, and television programs, and store these data in a large data repository. Individual rooms in the hotels are networked to a central network server computer so that they can be remotely monitored or controlled. When a customer arrives at one of these hotels, the system automatically changes the room conditions, such as dimming the lights, setting the room temperature, or selecting appropriate music, based on the customer's digital profile. The hotels also analyze their customer data to identify their best customers and to develop individualized marketing campaigns based on customers' preferences.

JCPenney exemplifies the benefits of information systems-enabled supplier intimacy. Every time a dress shirt is bought at a JCPenney store in the United States, the record of the sale appears immediately on computers in Hong Kong at the TAL Apparel Ltd. supplier, a contract manufacturer that produces one in eight dress shirts sold in the United States. TAL runs the numbers through a computer model it developed and then decides how many replacement shirts to make, and in what styles, colors, and sizes. TAL then sends the shirts to each JCPenney store, bypassing completely the retailer's warehouses. In other words, JCPenney's shirt inventory is near zero, as is the cost of storing it.

Improved Decision Making

Many business managers operate in an information fog bank, never really having the right information at the right time to make an informed decision. Instead, managers rely on forecasts, best guesses, and luck. The result is over- or underproduction of goods and services, misallocation of resources, and poor response times. These poor outcomes raise costs and lose customers. In the past decade, information systems and technologies have made it possible for managers to use real-time data from the marketplace when making decisions.

For instance, Verizon Corporation, one of the largest telecommunication companies in the United States, uses a Web-based digital dashboard to provide managers with precise real-time information on customer complaints, network performance for each locality served, and line outages or storm-damaged lines. Using this information, managers can immediately allocate repair resources to affected areas, inform consumers of repair efforts, and restore service fast.

Competitive Advantage

When firms achieve one or more of these business objectives—operational excellence; new products, services, and business models; customer/supplier intimacy; and improved decision making—chances are they have already achieved a competitive advantage. Doing things better than your competitors, charging less for superior products, and responding to customers and suppliers in real time all add up to higher sales and higher profits that your competitors cannot match. Apple Inc., Walmart, and UPS, described later in this chapter, are...
industry leaders because they know how to use information systems for this purpose.

**Survival**

Business firms also invest in information systems and technologies because they are necessities of doing business. Sometimes these “necessities” are driven by industry-level changes. For instance, after Citibank introduced the first automated teller machines (ATMs) in the New York region in 1977 to attract customers through higher service levels, its competitors rushed to provide ATMs to their customers to keep up with Citibank. Today, virtually all banks in the United States have regional ATMs and link to national and international ATM networks, such as CIRRUS. Providing ATM services to retail banking customers is simply a requirement of being in and surviving in the retail banking business.

There are many federal and state statutes and regulations that create a legal duty for companies and their employees to retain records, including digital records. For instance, the Toxic Substances Control Act (1976), which regulates the exposure of U.S. workers to more than 75,000 toxic chemicals, requires firms to retain records on employee exposure for 30 years. The Sarbanes-Oxley Act (2002), which was intended to improve the accountability of public firms and their auditors, requires certified public accounting firms that audit public companies to retain audit working papers and records, including all e-mails, for five years. Many other pieces of federal and state legislation in health care, financial services, education, and privacy protection impose significant information retention and reporting requirements on U.S. businesses. Firms turn to information systems and technologies to provide the capability to respond to these challenges.

### 1.2 Perspectives on Information Systems

So far we’ve used information systems and technologies informally without defining the terms. **Information technology (IT)** consists of all the hardware and software that a firm needs to use in order to achieve its business objectives. This includes not only computer machines, storage devices, and handheld mobile devices, but also software, such as the Windows or Linux operating systems, the Microsoft Office desktop productivity suite, and the many thousands of computer programs that can be found in a typical large firm. “Information systems” are more complex and can be best be understood by looking at them from both a technology and a business perspective.

**WHAT IS AN INFORMATION SYSTEM?**

An information system can be defined technically as a set of interrelated components that collect (or retrieve), process, store, and distribute information to support decision making and control in an organization. In addition to supporting decision making, coordination, and control, information systems may also help managers and workers analyze problems, visualize complex subjects, and create new products.

Information systems contain information about significant people, places, and things within the organization or in the environment surrounding it. By information we mean data that have been shaped into a form that is meaningful and useful to human beings. Data, in contrast, are streams of raw
facts representing events occurring in organizations or the physical environment before they have been organized and arranged into a form that people can understand and use.

A brief example contrasting information and data may prove useful. Supermarket checkout counters scan millions of pieces of data from bar codes, which describe each product. Such pieces of data can be totaled and analyzed to provide meaningful information, such as the total number of bottles of dish detergent sold at a particular store, which brands of dish detergent were selling the most rapidly at that store or sales territory, or the total amount spent on that brand of dish detergent at that store or sales region (see Figure 1.3).

Three activities in an information system produce the information that organizations need to make decisions, control operations, analyze problems, and create new products or services. These activities are input, processing, and output (see Figure 1.4). Input captures or collects raw data from within the organization or from its external environment. Processing converts this raw input into a meaningful form. Output transfers the processed information to the people who will use it or to the activities for which it will be used. Information systems also require feedback, which is output that is returned to appropriate members of the organization to help them evaluate or correct the input stage.

For example, in Disney World’s systems for controlling crowds, the raw input consists of data from airline bookings and hotel reservations, satellite weather data, historic attendance data for the date being analyzed, and images of crowds from video cameras stationed at key locations throughout the park. Computers store these data and process them to calculate projected total attendance for a specific date as well as attendance figures and wait times for each ride and restaurant at various times during the day. The systems indicate which rides or attractions are too overcrowded, which have spare capacity, and which can add capacity. The system provides meaningful information such as the number of

**FIGURE 1.3 DATA AND INFORMATION**

Raw data from a supermarket checkout counter can be processed and organized to produce meaningful information, such as the total unit sales of dish detergent or the total sales revenue from dish detergent for a specific store or sales territory.
guests attending on a particular day or time period, the average wait time per
ride, the average number of restaurant and shop visits, the average number of
rides guests squeezed into a single day’s visit, and the average amount spent
per customer during a specific time period. Such information helps Disney
management gauge the theme park’s overall efficiency and profitability.

Although computer-based information systems use computer technology
to process raw data into meaningful information, there is a sharp distinc-
tion between a computer and a computer program on the one hand, and an
information system on the other. Electronic computers and related software
programs are the technical foundation, the tools and materials, of modern
information systems. Computers provide the equipment for storing and
processing information. Computer programs, or software, are sets of operat-
ing instructions that direct and control computer processing. Knowing how
computers and computer programs work is important in designing solutions
to organizational problems, but computers are only part of an information
system.

A house is an appropriate analogy. Houses are built with hammers, nails, and
wood, but these do not make a house. The architecture, design, setting, land-
scaping, and all of the decisions that lead to the creation of these features are
part of the house and are crucial for solving the problem of putting a roof over
one’s head. Computers and programs are the hammers, nails, and lumber of
computer-based information systems, but alone they cannot produce the infor-
mation a particular organization needs. To understand information systems,
you must understand the problems they are designed to solve, their architec-
tural and design elements, and the organizational processes that lead to these
solutions.

**DIMENSIONS OF INFORMATION SYSTEMS**

To fully understand information systems, you must understand the broader
organization, management, and information technology dimensions
of systems (see Figure 1.5) and their power to provide solutions to chal-
lenges and problems in the business environment. We refer to this broader
understanding of information systems, which encompasses an understand-
ing of the management and organizational dimensions of systems as well
as the technical dimensions of systems, as **information systems literacy**. **Computer literacy**, in contrast, focuses primarily on knowledge of
information technology.

The field of **management information systems (MIS)** tries to achieve this
broader information systems literacy. MIS deals with behavioral issues as well
as technical issues surrounding the development, use, and impact of informa-
tion systems used by managers and employees in the firm.

Let's examine each of the dimensions of information systems—organizations,
management, and information technology.

**Organizations**

Information systems are an integral part of organizations. Indeed, for some
companies, such as credit reporting firms, there would be no business without
an information system. The key elements of an organization are its people,
structure, business processes, politics, and culture. We introduce these compo-
nents of organizations here and describe them in greater detail in Chapters 2
and 3.
Organizations have a structure that is composed of different levels and specialties. Their structures reveal a clear-cut division of labor. Authority and responsibility in a business firm are organized as a hierarchy, or a pyramid structure. The upper levels of the hierarchy consist of managerial, professional, and technical employees, whereas the lower levels consist of operational personnel.

**Senior management** makes long-range strategic decisions about products and services as well as ensures financial performance of the firm. **Middle management** carries out the programs and plans of senior management, and **operational management** is responsible for monitoring the daily activities of the business. **Knowledge workers**, such as engineers, scientists, or architects, design products or services and create new knowledge for the firm, whereas **data workers**, such as secretaries or clerks, assist with scheduling and communications at all levels of the firm. **Production or service workers** actually produce the product and deliver the service (see Figure 1.6).

Experts are employed and trained for different business functions. The major **business functions**, or specialized tasks performed by business organizations, consist of sales and marketing, manufacturing and production, finance and accounting, and human resources (see Table 1.2). Chapter 2 provides more detail on these business functions and the ways in which they are supported by information systems.

An organization coordinates work through its hierarchy and through its business processes, which are logically related tasks and behaviors for accomplishing work. Developing a new product, fulfilling an order, and hiring a new employee are examples of business processes.

Most organizations' business processes include formal rules that have been developed over a long time for accomplishing tasks. These rules guide employees in a variety of procedures, from writing an invoice to responding to customer complaints. Some of these business processes have been written down, but others

---

**FIGURE 1.6 LEVELS IN A FIRM**

Business organizations are hierarchies consisting of three principal levels: senior management, middle management, and operational management. Information systems serve each of these levels. Scientists and knowledge workers often work with middle management.
are informal work practices, such as a requirement to return telephone calls from coworkers or customers, that are not formally documented. Information systems automate many business processes. For instance, how a customer receives credit or how a customer is billed is often determined by an information system that incorporates a set of formal business processes.

Each organization has a unique culture, or fundamental set of assumptions, values, and ways of doing things, that has been accepted by most of its members. You can see organizational culture at work by looking around your university or college. Some bedrock assumptions of university life are that professors know more than students, the reasons students attend college is to learn, and that classes follow a regular schedule.

Parts of an organization’s culture can always be found embedded in its information systems. For instance, UPS's first priority is customer service, which is an aspect of its organizational culture that can be found in the company’s package tracking systems, which we describe later in this section.

Different levels and specialties in an organization create different interests and points of view. These views often conflict over how the company should be run and how resources and rewards should be distributed. Conflict is the basis for organizational politics. Information systems come out of this cauldron of differing perspectives, conflicts, compromises, and agreements that are a natural part of all organizations. In Chapter 3, we examine these features of organizations and their role in the development of information systems in greater detail.

Management

Management’s job is to make sense out of the many situations faced by organizations, make decisions, and formulate action plans to solve organizational problems. Managers perceive business challenges in the environment; they set the organizational strategy for responding to those challenges; and they allocate the human and financial resources to coordinate the work and achieve success. Throughout, they must exercise responsible leadership. The business information systems described in this book reflect the hopes, dreams, and realities of real-world managers.

But managers must do more than manage what already exists. They must also create new products and services and even re-create the organization from time to time. A substantial part of management responsibility is creative work driven by new knowledge and information. Information technology can play a powerful role in helping managers design and deliver new products and services and redirecting and redesigning their organizations. Chapter 12 treats management decision making in detail.

### TABLE 1.2 MAJOR BUSINESS FUNCTIONS

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales and marketing</td>
<td>Selling the organization’s products and services</td>
</tr>
<tr>
<td>Manufacturing and production</td>
<td>Producing and delivering products and services</td>
</tr>
<tr>
<td>Finance and accounting</td>
<td>Managing the organization’s financial assets and maintaining the</td>
</tr>
<tr>
<td></td>
<td>organization’s financial records</td>
</tr>
<tr>
<td>Human resources</td>
<td>Attracting, developing, and maintaining the organization’s labor force;</td>
</tr>
<tr>
<td></td>
<td>maintaining employee records</td>
</tr>
</tbody>
</table>

50 Part One Organizations, Management, and the Networked Enterprise
**Information Technology**

Information technology is one of many tools managers use to cope with change. **Computer hardware** is the physical equipment used for input, processing, and output activities in an information system. It consists of the following: computers of various sizes and shapes (including mobile handheld devices); various input, output, and storage devices; and telecommunications devices that link computers together.

**Computer software** consists of the detailed, preprogrammed instructions that control and coordinate the computer hardware components in an information system. Chapter 5 describes the contemporary software and hardware platforms used by firms today in greater detail.

**Data management technology** consists of the software governing the organization of data on physical storage media. More detail on data organization and access methods can be found in Chapter 6.

**Networking and telecommunications technology**, consisting of both physical devices and software, links the various pieces of hardware and transfers data from one physical location to another. Computers and communications equipment can be connected in networks for sharing voice, data, images, sound, and video. A **network** links two or more computers to share data or resources, such as a printer.

The world's largest and most widely used network is the **Internet**. The Internet is a global "network of networks" that uses universal standards (described in Chapter 7) to connect millions of different networks with nearly 2.3 billion users in over 230 countries around the world.

The Internet has created a new "universal" technology platform on which to build new products, services, strategies, and business models. This same technology platform has internal uses, providing the connectivity to link different systems and networks within the firm. Internal corporate networks based on Internet technology are called **intranets**. Private intranets extended to authorized users outside the organization are called **extranets**, and firms use such networks to coordinate their activities with other firms for making purchases, collaborating on design, and other interorganizational work. For most business firms today, using Internet technology is both a business necessity and a competitive advantage.

The **World Wide Web** is a service provided by the Internet that uses universally accepted standards for storing, retrieving, formatting, and displaying information in a page format on the Internet. Web pages contain text, graphics, animations, sound, and video and are linked to other Web pages. By clicking on highlighted words or buttons on a Web page, you can link to related pages to find additional information and links to other locations on the Web. The Web can serve as the foundation for new kinds of information systems such as UPS's Web-based package tracking system described in the following Interactive Session.

All of these technologies, along with the people required to run and manage them, represent resources that can be shared throughout the organization and constitute the firm's **information technology (IT) infrastructure**. The IT infrastructure provides the foundation, or platform, on which the firm can build its specific information systems. Each organization must carefully design and manage its IT infrastructure so that it has the set of technology services it needs for the work it wants to accomplish with information systems. Chapters 5 through 8 of this book examine each major technology component of information technology infrastructure and show how they all work together to create the technology platform for the organization.
The Interactive Session on Technology describes some of the typical technologies used in computer-based information systems today. UPS invests heavily in information systems technology to make its business more efficient and customer oriented. It uses an array of information technologies, including bar code scanning systems, wireless networks, large mainframe computers, handheld computers, the Internet, and many different pieces of software for tracking packages, calculating fees, maintaining customer accounts, and managing logistics.

Let's identify the organization, management, and technology elements in the UPS package tracking system we have just described. The organization element anchors the package tracking system in UPS's sales and production functions (the main product of UPS is a service—package delivery). It specifies the required procedures for identifying packages with both sender and recipient information, taking inventory, tracking the packages en route, and providing package status reports for UPS customers and customer service representatives.

The system must also provide information to satisfy the needs of managers and workers. UPS drivers need to be trained in both package pickup and delivery procedures and in how to use the package tracking system so that they can work efficiently and effectively. UPS customers may need some training to use UPS in-house package tracking software or the UPS Web site.

UPS's management is responsible for monitoring service levels and costs and for promoting the company's strategy of combining low cost and superior service. Management decided to use computer systems to increase the ease of sending a package using UPS and of checking its delivery status, thereby reducing delivery costs and increasing sales revenues.

The technology supporting this system consists of handheld computers, bar code scanners, desktop computers, wired and wireless communications networks, UPS's data center, storage technology for the package delivery data, UPS in-house package tracking software, and software to access the World Wide Web. The result is an information system solution to the business challenge of providing a high level of service with low prices in the face of mounting competition.

IT ISN'T JUST TECHNOLOGY: A BUSINESS PERSPECTIVE ON INFORMATION SYSTEMS

Managers and business firms invest in information technology and systems because they provide real economic value to the business. The decision to build or maintain an information system assumes that the returns on this investment will be superior to other investments in buildings, machines, or other assets. These superior returns will be expressed as increases in productivity, as increases in revenues (which will increase the firm's stock market value), or perhaps as superior long-term strategic positioning of the firm in certain markets (which produce superior revenues in the future).

We can see that from a business perspective, an information system is an important instrument for creating value for the firm. Information systems enable the firm to increase its revenue or decrease its costs by providing information that helps managers make better decisions or that improves the execution of business processes. For example, the information system for analyzing supermarket checkout data illustrated in Figure 1.3 on page 46 can increase firm profitability by helping managers make better decisions as to which products to stock and promote in retail supermarkets.
United Parcel Service (UPS) started out in 1907 in a closet-sized basement office. Jim Casey and Claude Ryan—two teenagers from Seattle with two bicycles and one phone—promised the “best service and lowest rates.” UPS has used this formula successfully for more than a century to become the world’s largest ground and air package-delivery company. It’s a global enterprise with over 400,000 employees, 93,000 vehicles, and the world’s ninth largest airline. UPS delivers 15.6 million packages and documents each day in the United States and more than 220 other countries and territories. The firm has been able to maintain leadership in small-package delivery services despite stiff competition from FedEx and Airborne Express by investing heavily in advanced information technology. UPS spends more than $1 billion each year to maintain a high level of customer service while keeping costs low and streamlining its overall operations.

It all starts with the scannable bar-coded label attached to a package, which contains detailed information about the sender, the destination, and when the package should arrive. Customers can download and print their own labels using special software provided by UPS or by accessing the UPS Web site. Before the package is even picked up, information from the “smart” label is transmitted to one of UPS’s computer centers in Mahwah, New Jersey, or Alpharetta, Georgia, and sent to the distribution center nearest its final destination.

Dispatchers at this center download the label data and use special software to create the most efficient delivery route for each driver that considers traffic, weather conditions, and the location of each stop. UPS estimates its delivery trucks save 28 million miles and burn 3 million fewer gallons of fuel each year as a result of using this technology. To further increase cost savings and safety, drivers are trained to use “340 Methods” developed by industrial engineers to optimize the performance of every task from lifting and loading boxes to selecting a package from a shelf in the truck.

The first thing a UPS driver picks up each day is a handheld computer called a Delivery Information Acquisition Device (DIAD), which can access a wireless cell phone network. As soon as the driver logs on, his or her day’s route is downloaded onto the handheld. The DIAD also automatically captures customers’ signatures along with pickup and delivery information. Package tracking information is then transmitted to UPS’s computer network for storage and processing. From there, the information can be accessed worldwide to provide proof of delivery to customers or to respond to customer queries. It usually takes less than 60 seconds from the time a driver presses “complete” on the DIAD for the new information to be available on the Web.

Through its automated package tracking system, UPS can monitor and even re-route packages throughout the delivery process. At various points along the route from sender to receiver, bar code devices scan shipping information on the package label and feed data about the progress of the package into the central computer. Customer service representatives are able to check the status of any package from desktop computers linked to the central computers and respond immediately to inquiries from customers. UPS customers can also access this information from the company’s Web site using their own computers or mobile phones.

Anyone with a package to ship can access the UPS Web site to track packages, check delivery routes, calculate shipping rates, determine time in transit, print labels, and schedule a pickup. The data collected at the UPS Web site are transmitted to the UPS central computer and then back to the customer after processing. UPS also provides tools that enable customers, such as Cisco Systems, to embed UPS functions, such as tracking and cost calculations, into their own Web sites so that they can track shipments without visiting the UPS site.

A Web-based Post Sales Order Management System (OMS) manages global service orders and inventory for critical parts fulfillment. The system enables high-tech electronics, aerospace, medical equipment, and other companies anywhere in the world that ship critical parts to quickly assess their critical parts inventory, determine the most optimal routing strategy to meet customer needs, place orders online, and track parts from the warehouse to the end user. An automated e-mail or fax feature keeps customers informed of each shipping milestone and can provide notification of any changes to flight schedules for commercial airlines carrying their parts.
UPS is now leveraging its decades of expertise managing its own global delivery network to manage logistics and supply chain activities for other companies. It created a UPS Supply Chain Solutions division that provides a complete bundle of standardized services to subscribing companies at a fraction of what it would cost to build their own systems and infrastructure. These services include supply chain design and management, freight forwarding, customs brokerage, mail services, multimodal transportation, and financial services, in addition to logistics services.

In 2006, UPS started running the supply chains of medical device and pharmaceutical companies. For example, at UPS headquarters in Louisville, Kentucky, company pharmacists fill 4,000 orders a day for insulin pumps and other supplies from customers of Medtronic Inc., the Minneapolis-based medical-device company. UPS pharmacists in Louisville log into Medtronic’s system, fill the orders with devices stocked on site, and arrange for UPS to ship them to patients. UPS’s service has allowed Medtronic to close its own distribution warehouse and significantly reduce the costs of processing each order. UPS and other parcel delivery companies are investing in giant warehouses that service multiple pharmaceutical companies at once, with freezers for medicines and high-security vaults for controlled substances.

UPS has partnered with Pratt & Whitney, a world leader in the design, manufacture, and service of aircraft engines, space propulsion systems, and industrial gas turbines, to run its Georgia Distribution Center, which processes 98 percent of the parts used to overhaul Pratt & Whitney jet engines for shipment around the world. UPS and Pratt & Whitney employees together keep track of about 25,000 different kinds of parts and fulfill up to 1,400 complex orders each day—ranging from a few nuts and bolts to kits comprising all the parts needed to build an entire engine. On the receiving side of the 250,000-square-foot building, UPS quality inspectors check newly arrived parts against blueprints.


**CASE STUDY QUESTIONS**

1. What are the inputs, processing, and outputs of UPS’s package tracking system?
2. What technologies are used by UPS? How are these technologies related to UPS’s business strategy?
3. What strategic business objectives do UPS’s information systems address?
4. What would happen if UPS’s information systems were not available?

Using a handheld computer called a Delivery Information Acquisition Device (DIAD), UPS drivers automatically capture customers’ signatures along with pickup, delivery, and time card information. UPS information systems use these data to track packages while they are being transported.
Every business has an information value chain, illustrated in Figure 1.7, in which raw information is systematically acquired and then transformed through various stages that add value to that information. The value of an information system to a business, as well as the decision to invest in any new information system, is, in large part, determined by the extent to which the system will lead to better management decisions, more efficient business processes, and higher firm profitability. Although there are other reasons why systems are built, their primary purpose is to contribute to corporate value.

From a business perspective, information systems are part of a series of value-adding activities for acquiring, transforming, and distributing information that managers can use to improve decision making, enhance organizational performance, and, ultimately, increase firm profitability.

The business perspective calls attention to the organizational and managerial nature of information systems. An information system represents an organizational and management solution, based on information technology, to a challenge or problem posed by the environment. Every chapter in this book begins with a short case study that illustrates this concept. A diagram at the beginning of each chapter illustrates the relationship between a business challenge and resulting management and organizational decisions to use IT as a solution to challenges generated by the business environment. You can use this diagram as a starting point for analyzing any information system or information system problem you encounter.

Review the diagram at the beginning of this chapter. The diagram shows how the Ponsse wood production firm systems solved the business problem presented by the need to integrate its production and manufacturing processes.

**FIGURE 1.7 THE BUSINESS INFORMATION VALUE CHAIN**

From a business perspective, information systems are part of a series of value-adding activities for acquiring, transforming, and distributing information that managers can use to improve decision making, enhance organizational performance, and, ultimately, increase firm profitability.
These systems provide a solution that takes advantage of new interactive digital technology and opportunities created by a host of technologies such as GPS. The firm developed new ways to coordinate production, manufacturing, and sales. The diagram also illustrates how management, technology, and organizational elements work together to create system solutions.

**COMPLEMENTARY ASSETS: ORGANIZATIONAL CAPITAL AND THE RIGHT BUSINESS MODEL**

Awareness of the organizational and managerial dimensions of information systems can help us understand why some firms achieve better results from their information systems than others. Studies of returns from information technology investments show that there is considerable variation in the returns firms receive (see Figure 1.8). Some firms invest a great deal and receive a great deal (quadrant 2); others invest an equal amount and receive few returns (quadrant 4). Still other firms invest little and receive much (quadrant 1), whereas others invest little and receive little (quadrant 3). This suggests that investing in information technology does not by itself guarantee good returns. What accounts for this variation among firms?

The answer lies in the concept of complementary assets. Information technology investments alone cannot make organizations and managers more effective unless they are accompanied by supportive values, structures, and behavior patterns in the organization and other complementary assets. Business firms need to change how they do business before they can really reap the advantages of new information technologies.

Some firms fail to adopt the right business model that suits the new technology, or seek to preserve an old business model that is doomed by new technology. For instance, recording label companies refused to change their

---

**FIGURE 1.8 VARIATION IN RETURNS ON INFORMATION TECHNOLOGY INVESTMENT**

Although, on average, investments in information technology produce returns far above those returned by other investments, there is considerable variation across firms.

Source: Based on Brynjolfsson and Hitt (2000).
old business model, which was based on physical music stores for distribution rather than adopt a new online distribution model. As a result, online legal music sales are dominated not by record companies but by a technology company called Apple Computer.

**Complementary assets** are those assets required to derive value from a primary investment (Teece, 1988). For instance, to realize value from automobiles requires substantial complementary investments in highways, roads, gasoline stations, repair facilities, and a legal regulatory structure to set standards and control drivers.

Research indicates that firms that support their technology investments with investments in complementary assets, such as new business models, new business processes, management behavior, organizational culture, or training, receive superior returns, whereas those firms failing to make these complementary investments receive less or no returns on their information technology investments (Brynjolfsson, 2003; Brynjolfsson and Hitt, 2000; Davern and Kauffman, 2000; Laudon, 1974). These investments in organization and management are also known as **organizational and management capital**.

Table 1.3 lists the major complementary investments that firms need to make to realize value from their information technology investments. Some of this investment involves tangible assets, such as buildings, machinery, and tools. However, the value of investments in information technology depends to a large extent on complementary investments in management and organization.

Key organizational complementary investments are a supportive business culture that values efficiency and effectiveness, an appropriate business model, efficient business processes, decentralization of authority, highly distributed decision rights, and a strong information system (IS) development team.

<table>
<thead>
<tr>
<th>TABLE 1.3 COMPLEMENTARY SOCIAL, MANAGERIAL, AND ORGANIZATIONAL ASSETS REQUIRED TO OPTIMIZE RETURNS FROM INFORMATION TECHNOLOGY INVESTMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Organizational assets</strong></td>
</tr>
<tr>
<td>Supportive organizational culture that values efficiency and effectiveness</td>
</tr>
<tr>
<td>Appropriate business model</td>
</tr>
<tr>
<td>Efficient business processes</td>
</tr>
<tr>
<td>Decentralized authority</td>
</tr>
<tr>
<td>Distributed decision-making rights</td>
</tr>
<tr>
<td>Strong IS development team</td>
</tr>
<tr>
<td><strong>Managerial assets</strong></td>
</tr>
<tr>
<td>Strong senior management support for technology investment and change</td>
</tr>
<tr>
<td>Incentives for management innovation</td>
</tr>
<tr>
<td>Teamwork and collaborative work environments</td>
</tr>
<tr>
<td>Training programs to enhance management decision skills</td>
</tr>
<tr>
<td>Management culture that values flexibility and knowledge-based decision making.</td>
</tr>
<tr>
<td><strong>Social assets</strong></td>
</tr>
<tr>
<td>The Internet and telecommunications infrastructure</td>
</tr>
<tr>
<td>IT-enriched educational programs raising labor force computer literacy</td>
</tr>
<tr>
<td>Standards (both government and private sector)</td>
</tr>
<tr>
<td>Laws and regulations creating fair, stable market environments</td>
</tr>
<tr>
<td>Technology and service firms in adjacent markets to assist implementation</td>
</tr>
</tbody>
</table>
Important managerial complementary assets are strong senior management support for change, incentive systems that monitor and reward individual innovation, an emphasis on teamwork and collaboration, training programs, and a management culture that values flexibility and knowledge.

Important social investments (not made by the firm but by the society at large, other firms, governments, and other key market actors) are the Internet and the supporting Internet culture, educational systems, network and computing standards, regulations and laws, and the presence of technology and service firms.

Throughout the book we emphasize a framework of analysis that considers technology, management, and organizational assets and their interactions. Perhaps the single most important theme in the book, reflected in case studies and exercises, is that managers need to consider the broader organization and management dimensions of information systems to understand current problems as well as to derive substantial above-average returns from their information technology investments. As you will see throughout the text, firms that can address these related dimensions of the IT investment are, on average, richly rewarded.

1.3 Contemporary Approaches to Information Systems

The study of information systems is a multidisciplinary field. No single theory or perspective dominates. Figure 1.9 illustrates the major disciplines that contribute problems, issues, and solutions in the study of information systems. In general, the field can be divided into technical and behavioral approaches. Information systems are sociotechnical systems. Though they are composed of machines, devices, and “hard” physical technology, they require substantial social, organizational, and intellectual investments to make them work properly.

Technical Approach

The technical approach to information systems emphasizes mathematically based models to study information systems, as well as the physical technology and formal capabilities of these systems. The disciplines that contribute to the technical approach are computer science, management science, and operations research.

Computer science is concerned with establishing theories of computability, methods of computation, and methods of efficient data storage and access. Management science emphasizes the development of models for decision-making and management practices. Operations research focuses on mathematical techniques for optimizing selected parameters of organizations, such as transportation, inventory control, and transaction costs.

Behavioral Approach

An important part of the information systems field is concerned with behavioral issues that arise in the development and long-term maintenance of information systems. Issues such as strategic business integration, design, implementation, utilization, and management cannot be explored usefully with the models used
in the technical approach. Other behavioral disciplines contribute important concepts and methods.

For instance, sociologists study information systems with an eye toward how groups and organizations shape the development of systems and also how systems affect individuals, groups, and organizations. Psychologists study information systems with an interest in how human decision makers perceive and use formal information. Economists study information systems with an interest in understanding the production of digital goods, the dynamics of digital markets, and how new information systems change the control and cost structures within the firm.

The behavioral approach does not ignore technology. Indeed, information systems technology is often the stimulus for a behavioral problem or issue. But the focus of this approach is generally not on technical solutions. Instead, it concentrates on changes in attitudes, management and organizational policy, and behavior.

**APPROACH OF THIS TEXT: SOCIOTECHNICAL SYSTEMS**

Throughout this book you will find a rich story with four main actors: suppliers of hardware and software (the technologists); business firms making investments and seeking to obtain value from the technology; managers and employees seeking to achieve business value (and other goals); and the contemporary legal, social, and cultural context (the firm's environment). Together these actors produce what we call management information systems.

The study of management information systems (MIS) arose to focus on the use of computer-based information systems in business firms and government agencies. MIS combines the work of computer science, management science, and operations research with a practical orientation toward
developing system solutions to real-world problems and managing information technology resources. It is also concerned with behavioral issues surrounding the development, use, and impact of information systems, which are typically discussed in the fields of sociology, economics, and psychology.

Our experience as academics and practitioners leads us to believe that no single approach effectively captures the reality of information systems. The successes and failures of information are rarely all technical or all behavioral. Our best advice to students is to understand the perspectives of many disciplines. Indeed, the challenge and excitement of the information systems field is that it requires an appreciation and tolerance of many different approaches.

The view we adopt in this book is best characterized as the sociotechnical view of systems. In this view, optimal organizational performance is achieved by jointly optimizing both the social and technical systems used in production.

Adopting a sociotechnical systems perspective helps to avoid a purely technological approach to information systems. For instance, the fact that information technology is rapidly declining in cost and growing in power does not necessarily or easily translate into productivity enhancement or bottom-line profits. The fact that a firm has recently installed an enterprise-wide financial reporting system does not necessarily mean that it will be used, or used effectively. Likewise, the fact that a firm has recently introduced new business procedures and processes does not necessarily mean employees will be more productive in the absence of investments in new information systems to enable those processes.

In this book, we stress the need to optimize the firm’s performance as a whole. Both the technical and behavioral components need attention. This means that technology must be changed and designed in such a way as to fit organizational and individual needs. Sometimes, the technology may have to be “de-optimized” to accomplish this fit. For instance, mobile phone users adapt this technology to their personal needs, and as a result manufacturers quickly seek to adjust the technology to conform with user expectations. Organizations and individuals must also be changed through training,

**FIGURE 1.10 A SOCIOTECHNICAL PERSPECTIVE ON INFORMATION SYSTEMS**

In a sociotechnical perspective, the performance of a system is optimized when both the technology and the organization mutually adjust to one another until a satisfactory fit is obtained.
learning, and planned organizational change to allow the technology to operate and prosper. Figure 1.10 illustrates this process of mutual adjustment in a sociotechnical system.

**Learning Track Modules**

The following Learning Tracks provide content relevant to topics covered in this chapter:

1. How Much Does IT Matter?
2. Information Systems and Your Career
3. The Mobile Digital Platform
1. **How are information systems transforming business, and what is their relationship to globalization?**

   E-mail, online conferencing, smartphones, and tablet computers have become essential tools for conducting business. Information systems are the foundation of fast-paced supply chains. The Internet allows many businesses to buy, sell, advertise, and solicit customer feedback online. Organizations are trying to become more competitive and efficient by digitally enabling their core business processes and evolving into digital firms. The Internet has stimulated globalization by dramatically reducing the costs of producing, buying, and selling goods on a global scale. New information system trends include the emerging mobile digital platform, online software as a service, and cloud computing.

2. **Why are information systems so essential for running and managing a business today?**

   Information systems are a foundation for conducting business today. In many industries, survival and the ability to achieve strategic business goals are difficult without extensive use of information technology. Businesses today use information systems to achieve six major objectives: operational excellence; new products, services, and business models; customer/supplier intimacy; improved decision making; competitive advantage; and day-to-day survival.

3. **What exactly is an information system? How does it work? What are its management, organization, and technology components?**

   From a technical perspective, an information system collects, stores, and disseminates information from an organization's environment and internal operations to support organizational functions and decision making, communication, coordination, control, analysis, and visualization. Information systems transform raw data into useful information through three basic activities: input, processing, and output.

   From a business perspective, an information system provides a solution to a problem or challenge facing a firm and represents a combination of management, organization, and technology elements. The management dimension of information systems involves issues such as leadership, strategy, and management behavior. The technology dimension consists of computer hardware, software, data management technology, and networking/telecommunications technology (including the Internet). The organization dimension of information systems involves issues such as the organization's hierarchy, functional specialties, business processes, culture, and political interest groups.

4. **What are complementary assets? Why are complementary assets essential for ensuring that information systems provide genuine value for an organization?**

   In order to obtain meaningful value from information systems, organizations must support their technology investments with appropriate complementary investments in organizations and management. These complementary assets include new business models and business processes, supportive organizational culture and management behavior, appropriate technology standards, regulations, and laws. New information technology investments are unlikely to produce high returns unless businesses make the appropriate managerial and organizational changes to support the technology.

5. **What academic disciplines are used to study information systems? How does each contribute to an understanding of information systems? What is a sociotechnical systems perspective?**

   The study of information systems deals with issues and insights contributed from technical and behavioral disciplines. The disciplines that contribute to the technical approach focusing on formal models and capabilities of systems are computer science, management science, and operations research. The disciplines contributing to the behavioral approach focusing on the design, implementation, management, and business impact of systems are psychology, sociology, and economics. A sociotechnical view of systems considers both technical and social features of systems and solutions that represent the best fit between them.
Key Terms

Business functions, 49
Business model, 43
Business processes, 41
Complementary assets, 57
Computer hardware, 51
Computer literacy, 48
Computer software, 51
Culture, 50
Data, 45
Data management technology, 51
Data workers, 49
Digital firm, 41
Extranets, 51
Feedback, 46
Information, 45
Information system, 45
Information systems literacy, 48
Information technology (IT), 45
Information technology (IT) infrastructure, 51
Input, 46
Internet, 51
Intranets, 51
Knowledge workers, 49
Management information systems (MIS), 48
Middle management, 49
Network, 51
Networking and telecommunications technology, 51
Operational management, 49
Organizational and management capital, 57
Output, 46
Processing, 46
Production or service workers, 49
Senior management, 49
Sociotechnical view, 60
World Wide Web, 51

Review Questions

1. How are information systems transforming business, and what is their relationship to globalization?
   - Describe how information systems have changed the way businesses operate and their products and services.
   - Identify three major new information system trends.
   - Describe the characteristics of a digital firm.
   - Describe the challenges and opportunities of globalization in a "flattened" world.

2. Why are information systems so essential for running and managing a business today?
   - List and describe six reasons why information systems are so important for business today.

3. What exactly is an information system? How does it work? What are its management, organizational, and technology components?
   - Define an information system and describe the activities it performs.
   - List and describe the organizational, management, and technology dimensions of information systems.
   - Distinguish between data and information and between information systems literacy and computer literacy.

4. What are complementary assets? Why are complementary assets essential for ensuring that information systems provide genuine value for an organization?
   - Define complementary assets and describe their relationship to information technology.
   - Describe the complementary social, managerial, and organizational assets required to optimize returns from information technology investments.

5. What academic disciplines are used to study information systems? How does each contribute to an understanding of information systems? What is a sociotechnical systems perspective?
   - List and describe each discipline that contributes to a technical approach to information systems.
   - List and describe each discipline that contributes to a behavioral approach to information systems.
   - Describe the sociotechnical perspective on information systems.
Discussion Questions

1. Information systems are too important to be left to computer specialists. Do you agree? Why or why not?
2. If you were setting up the Web site for Disney World visitors, what management, organization, and technology issues might you encounter?
3. What are some of the organizational, managerial, and social complementary assets that help make UPS's information systems so successful?

Hands-On MIS Projects

The projects in this section give you hands-on experience in analyzing financial reporting and inventory management problems, using data management software to improve management decision making about increasing sales, and using Internet software for researching job requirements.

Management Decision Problems

1. Snyders of Hanover, which sells about 80 million bags of pretzels, snack chips, and organic snack items each year, had its financial department use spreadsheets and manual processes for much of its data gathering and reporting. Hanover's financial analyst would spend the entire final week of every month collecting spreadsheets from the heads of more than 50 departments worldwide. She would then consolidate and re-enter all the data into another spreadsheet, which would serve as the company's monthly profit-and-loss statement. If a department needed to update its data after submitting the spreadsheet to the main office, the analyst had to return the original spreadsheet, then wait for the department to re-submit its data before finally submitting the updated data in the consolidated document. Assess the impact of this situation on business performance and management decision making.

2. Dollar General Corporation operates deep-discount stores offering housewares, cleaning supplies, clothing, health and beauty aids, and packaged food, with most items selling for $1. Its business model calls for keeping costs as low as possible. The company has no automated method for keeping track of inventory at each store. Managers know approximately how many cases of a particular product the store is supposed to receive when a delivery truck arrives, but the stores lack technology for scanning the cases or verifying the item count inside the cases. Merchandise losses from theft or other mishaps have been rising and now represent over 3 percent of total sales. What decisions have to be made before investing in an information system solution?

Improving Decision Making: Using Databases to Analyze Sales Trends

Software skills: Database querying and reporting
Business skills: Sales trend analysis

In this project, you will start out with raw transactional sales data and use Microsoft Access database software to develop queries and reports that help managers make better decisions about product pricing, sales promotions, and inventory replenishment. In MyMISLab, you can find a Store and Regional Sales Database developed in Microsoft Access. The database contains raw data on weekly store sales of computer equipment in various sales regions. The database includes fields for store identification number, sales region, item number, item description, unit price, units sold, and the weekly sales period when the sales were made. Use Access to develop some reports and queries to make this information more useful for running the business. Sales and production managers want answers to the following questions:

- Which products should be restocked?
- Which stores and sales regions would benefit from a promotional campaign and additional marketing?
- When (what time of year) should products be offered at full price, and when should discounts be used?
You can easily modify the database table to find and report your answers. Print your reports and results of queries.

**Improving Decision Making: Using the Internet to Locate Jobs Requiring Information Systems Knowledge**

**Software skills:** Internet-based software  
**Business skills:** Job searching

Visit a job-posting Web site such as Monster.com. Spend some time at the site examining jobs for accounting, finance, sales, marketing, and human resources. Find two or three descriptions of jobs that require some information systems knowledge. What information systems knowledge do these jobs require? What do you need to do to prepare for these jobs? Write a one- to two-page report summarizing your findings.

**Video Cases**

Video Cases and Instructional Videos illustrating some of the concepts in this chapter are available. Contact your instructor to access these videos.

**Collaboration and Teamwork Project**

In MyMISLab, you will find a Collaboration and Teamwork Project dealing with the concepts in this chapter. You will be able to use Google Sites, Google Docs, and other open-source collaboration tools to complete the assignment.
Mashaweer is the first personal service company in Egypt. It's purely dedicated to saving its clients' time and effort acting as a personal assistant 24 hours a day. The personal assistant is a rider with a motorcycle who runs any errands for individual clients or corporations at any given time. The most common service they provide is buying groceries or other goods from stores, paying bills, and acting as a courier. Mashaweer's success relies heavily on their flexibility, and they have often received unusual requests that they have fulfilled in order to gain customer loyalty — including: going to the gym to tell someone to turn on the phone as someone is trying to reach them, delivering presents to a client's fiancée every 15 minutes, and carrying a client's shopping bags from the car to the house.

Mashaweer is an essential service for the Egyptians because traffic is a problem that everyone in Egypt faces, making it difficult for an individual to get a couple of errands done on the same day. Mashaweer's service has achieved such success in Alexandria and Cairo, where traffic is an issue, saving people one of the most valuable commodities out there; time. The service is able to give people more quality time to spend with family or friends, instead of taking care of the daily errands that usually take up half of one's day. They also act as a security or safety measure as they perform people's errands in unsafe times, such as the period after the revolution or simply late at night. Most individuals cannot afford having a full time assistant to perform their errands whenever needed. Mashaweer's agents act as full time assistants for every individual at a part time cost.

Since starting the company in Alexandria in 2010, Mashaweer has since expanded to Cairo and operates around 600 orders per day. They plan to expand even further geographically within Egypt and to other countries in the region as well as enhancing and increasing the services they provide.

The idea of Mashaweer was created by Mohamed Wahid (24 years old) and then co-founded with his partners, Ahmed El Kordy (25 years old) and Aly El Shazly (27 years old). They were all born and raised in Alexandria. Ahmed El Kordy and Mohamed Wahid met when they both transferred from different schools to IGCSE Academy (AAST) for high school. Ahmed El Kordy finished high school in 2 years and went on to achieve his bachelor's degree in industrial engineering from The Arab Academy of Science and Technology (AAST), graduating in 2008. Part of his undergraduate degree was spent doing a year abroad in Carleton University in Ottawa, Canada. During the summers of his undergraduate years, Ahmed completed several internships in the United Kingdom and Ireland. Mohamed Wahid also went to AAST graduating in 2009 with a bachelor's degree in construction engineering. Aly El Shazly attended St. Marks School for his entire school career, he then went on to Alexandria University where he studied business and graduated in 2007. After college, Ahmed El Kordy went on to work at his father's import/export business. Mohamed Wahid went on to establish a company called X-trade for trade and contracting, followed by a marketing and advertising company called Green Media. Currently, he's a main shareholder in both, in addition to being the vice-chairman of Green Towers, a real estate company with a net worth of about $16 million.

Wahid thought of the idea of establishing Mashaweer while he was preparing for his wedding. His bride-to-be was overwhelmed with errands that she had to get done within a few days and he started wondering what she would have done if she couldn't afford having a full time driver who did all of her errands for her. While on his honeymoon, he kept thinking about this idea and how much time people could save and what a valuable service it could be, so he decided to call his friends to start transforming the idea into an actual business plan. After developing a business plan, the three entrepreneurs decided to go into the implementation phase and actually build this business. They started small and grew organically as the demand for the service increased. Each of the three entrepreneurs invested $5,000 into the project to total a starting capital of $15,000. They started with only 3 motorcycles, 6 riders, and a hotline.

As the three friends realized they had actually succeeded in Alexandria, they decided they wanted to move to the next phase by establishing Mashaweer in Cairo. When they decided to expand to Cairo, they decided to adopt a completely different strategy. They wanted to be able to cover all of Greater Cairo, as a whole, and not just specific areas, from the very beginning. During the Revolution in January 2011 they started gathering market research to expand in Cairo and started investing heavily. Since business
all over the country had come to a standstill, they made several large purchases such as motorcycles and advertising space for fractions of the price. When others saw it as a time to slow down, the entrepreneurs saw it as an opportunity to start marketing for their business. By March they realized that they needed to increase the original investment so that they can grow large enough to capture the market in Cairo. To do so, they brought in other investors, mainly from their friends and family, to raise the capital investment up to $1.67 million. They planned to enter Cairo with full force so that there would be a high barrier of entry for any competitor they decided that their competitive advantage would have to be in investing in technology. They wanted to get an ERP (Enterprise Resource Planning) system but found quotations to be too high. To fix this they started their own information technology company, Innov8 (innovate), where they created a customized ERP system, which they then connected to their customized PDAs (Personal Digital Assistants) through a cloud computing system that was made by LinkDotNet and Mobinil. Each rider receives tasks one at a time on the PDA, which also includes a GPS to provide detailed directions. The GPS monitors the rider’s location.

To reduce cost and ensure quality, Mashaweer does not rely on outsourcing in any of its stages as long as it can do the work with the same or better quality. This explains why Mashaweer founded Innov8 in order to build its system and manage its technical work. Now, Mashaweer only owns part of this company and is one of its numerous clients. One further example of Mashaweer’s in house capabilities is its call center. The company preferred to have an internal call center after rejecting a number of offers for an outsourced one. The reason for this was to be able to monitor the performance of the agents and always work on improving the quality of their customer service. Investing in an innovative contact center and using CISCO, which supports up to 300IP phones, a reporting module and a recording system made it much easier for Mashaweer to track its received calls and work on any problems that might face its customer service agents.

Software components developed by Innov8 include the Mashaweer Server, Mashaweer API (Application Programmers’ Interface), and Mashaweer PDA client. The Mashaweer Server is a centralized application that manages the following elements:

- Orders (placement, editing, pricing, review, tracking and reports)
- Routes management and optimization
- Clients (management, reports, discounts)
- Packages tracking
- Contracts
- Call center
- Satellite offices
- Representatives
- Cash transactions and expenses tracking for representatives and satellite offices
- Asset tracking of vehicles, PDAs and mobile printers
- Management reports

The API is a method of integrating Mashaweer ordering system with third parties. This allows third parties to automate their delivery system and integrate Mashaweer into their existing CRM/dispatching systems, opening a wide opportunity for business expansion.

The Mashaweer PDA application is installed on each representative PDA and manages the following elements:

- Order items progress tracking
- Collection of order fees and other costs, against a printed invoice
- Package handling (barcode scanning and destinations)
- Messaging
- Cash and expenses tracking
- Synchronizing data periodically and at the beginning of each shift

When Mashaweer was first introduced in Egypt, it captured 100 percent of market share for such a service, because it was the first and only company of its nature. However, the market was not aware or used to such a service, so it started growing slowly in Alexandria until people grasped the idea and got accustomed to the fact that there is a company that can take over your errands. In contrast, when the company started operating in Cairo, it grew at surprisingly fast pace. There are several factors are expected to affect the target market and make it easier for Mashaweer to penetrate it aggressively.

At the beginning, people’s assumption is that using Mashaweer is too luxurious and costly. When they use it for the first couple of times, this perception changes and they begin to rely on this convenient service. As more and more people get accustomed with the service, it creates a cultural change that significantly affects the demand on the service.

Another factor that is expected to facilitate working conditions and reduce costs is the technological advances that occur every day. Mashaweer heavily depends on technological tools, and would benefit from the advancements and price reductions that continuously take place. As a result, Mashaweer’s total
costs will decrease, enabling it to decrease its prices and further improve its quality to become even more convenient for a larger number of people.

Mashaweer is the only company of its kind in Egypt that operates on this scale. However, there is a company called Wassaly that was established in Cairo after Mashaweer's success in Alexandria. This company operates on a much smaller scale. Their indirect competitors include other courier services (e.g., DHL, UPS, TNT, and FedEx). However, they have positioned themselves as the flexible courier in contrast to the couriers available in the market today; they offer same day delivery rather than next day delivery. Mashaweer has several other advantages that make it very hard for others to compete:

- Database of thousands of loyal clients.
- Self-investment is manageable.
- Highly qualified and carefully selected riders due to the high salaries compared to the delivery sector in the Egypt.
- Various revenue streams.
- Being the owner of the IT company Innov8 fosters technology integration in Mashaweer.

Mashaweer has several unique selling propositions. The main two aspects are being the first in the market, and the only of its kind. Also, the most important differentiator is the flexibility of their service, which addresses all of their customer’s needs and requests.

Unlike new entrants or copycats in the market, Mashaweer have invested highly in the systems they use. They invested in PDAs to enable the operations process to be monitored accurately since it provides data like GPS tracking to track each order and the location or stage the messenger is located. Through this technology, Mashaweer decreases the amount of errors due to the fact that the messenger is tied to an automated process where he receives his tasks through the PDA handheld. Meanwhile, a SCADA (Supervisory Control and Data Acquisition) system presented on a big screen will be available at Mashaweer headquarters to monitor all live orders and measure the traffic in case of rush hours, thus enabling the operation team to react and try a preventive and corrective action.

Mashaweer’s infrastructures includes the following.

**Equipment:** 130 motorcycles units and 10 cars.

**Software:** A logistics management solution system was developed specifically for Mashaweer, and served from a cloud-hosted server. The solution consists of a web-based portal where call center agents, logistics, and managers can add, edit, track, and view reports.

**PDA:** A PDA client was developed to connect to the server in order to allow Mashaweer representatives to view and update their assigned orders via an XML-based web service. Except for the PDA client, the solution is based on open source technologies (PHP, CodeIgniter, MySQL, jQuery, Ubuntu Linux). The PDA devices will be a main factor in integrating the operational team with the fleet of riders.

**Hardware:** Windows Mobile PDAs were used for viewing and updating orders on the move. Each PDA is paired to a Bluetooth mobile printer for printing receipts. The printer is also equipped with a swipe card reader module so that it can be used in the future for credit card payment collection, and for promotion cards. Mashaweer server is a Linux VM hosted on a cloud solution provided by Innov8, the sister company that developed the entire information technology system.

**Head Quarters:** The decision was made to buy a new headquarters instead of renting an existing one.

Mashaweer’s future strategy is as follows:

**Mashaweer Market:** Mashaweer Market is an online supermarket that will enable people to do their grocery shopping through Mashaweer’s website and get it delivered by its representatives within 30 minutes of placing the order. This will be made possible by having access to a large number of supermarkets around Cairo and Alexandria, so that representatives can pick the order from the closest outlet and deliver it to the customer as quickly as possible. All products will be displayed on the website.

Mashaweer is hoping to reach an average of 4000 orders daily in return for a delivery charge of 5 Egyptian pounds per order.

**Call center:** Mashaweer’s call center is expected to make up an important revenue stream for the company in the near future, as the company starts introducing marketing campaigns. In addition, Mashaweer is planning to expand its call center to include other companies other than Mashaweer.

**Geographical Expansion:** Using the technology they have invested in building their infrastructure, Mashaweer now has the potential to easily enter and penetrate other markets in different regions at a very low initiation cost. They plan to expand to other regions within Egypt, in addition to expanding to other countries within the Middle East. In October 2013 they will open their first franchise in Beirut, Lebanon. They are also looking to expand to several countries in the Gulf.

CASE STUDY QUESTIONS

1. What kinds of applications are described in this case? What business functions do they support?
2. What are the benefits from equipping their riders with PDAs?
3. Was it a good decision to expand the business to Cairo? What are the implications of information systems?
4. Do you think that Mashaweer will be able to accomplish their future strategy and sustain its market share?
5. Do you think in near future, the competition between Mashaweer and Wassaly will be aggressive? Why?

Case contributed by Niveen Ezzat, Cairo University