|
|
(8 edições intermediárias de 4 usuários não apresentadas) |
Linha 1: |
Linha 1: |
− | [[Arquivo:Experiencia.JPG|thumb|Esquema didático para o aparato usado por Michelson-Morley]] | + | [[Arquivo:Morley e Michelson.jpg|thumb|Edward Williams Morley (1838-1923) e Albert Abraham Michelson (1852 - 1931)]] |
− | Realizado em 1887 por Albert Michelson (1852 - 1931) e Edward Morley (1838-1923), no que é hoje a Case Western Reserve University, | + | [[Arquivo:Interferometer.png|thumb|Esquema didático para o aparato usado por Michelson-Morley]] |
− | o '''experimento de Michelson-Morley''' foi decisivo pois demonstrou experimentalmente a constância da velocidade da luz, independente do referencial adotado. | + | Realizado em 1887 por Albert Michelson (1852 - 1931) e Edward Morley (1838 - 1923), no que é hoje a Case Western Reserve University,o experimento de Michelson-Morley foi decisivo pois demonstrou experimentalmente a constância da velocidade da luz, independente do referencial adotado. |
| | | |
− | ////
| + | Nos finais do século XIX, a teoria ondulatória da luz exigia um meio chamado éter, cujas vibrações produziriam os fenômenos do calor e da luz. Como a luz também se propagava no vácuo, entendia-se que o éter se estendia por todo o espaço, preenchendo o vácuo. No entanto, devido à enorme velocidade da luz, a detecção da presença e das propriedades do éter apresentava enormes dificuldades técnicas. A solução deste problema foi o interferômetro. O interferômetro é composto por uma fonte de luz coerente, um separador de feixe, dois espelhos, e um detector de luz. Um feixe de luz é emitido contra o separador, que o divide em dois feixes, cada um dirigido a um espelho, com um ângulo de 90º em relação um ao outro. Esses feixes são então refletidos, voltam para o separador, e são recombinados, produzindo um padrão de interferência construtiva ou destrutiva, enquanto são desviados para o detector. O padrão criado depende do tempo que a luz demorou a percorrer o espaço desde que se separaram os feixes, até se recombinarem. Se a Terra se estivesse a mover no éter, o feixe paralelo ao "vento" do éter mover-se-ia mais lentamente do que o feixe perpendicular, e revelar-se-ia esse efeito na mudança da posição das franjas de interferência. Se o éter estivesse estacionário em relação ao Sol, esperar-se-ia um desvio das franjas de 4% de uma franja. |
− | da história da física, foi levada a cabo em 1887 , no que é hoje a Case Western Reserve University. O experimento pretendia detectar o movimento relativo da matéria (no caso, do planeta Terra) através do éter estacionário. Os resultados negativos desse experimento são geralmente considerados as primeiras evidências fortes contra a teoria do éter, e iniciariam uma linha de pesquisa que eventualmente levou a relatividade especial, na qual o éter estacionário não teria qualquer função.
| + | |
| | | |
− | A teoria [[física]] no fim do [[século XIX]] postulava que, tal como as ondas de água têm de ter um meio por onde propagar-se (a [[água]]) e as ondas [[som|sonoras]] audíveis também requerem o seu meio (o [[ar]]), as ondas luminosas iriam necessitar, também elas, de um meio próprio, o "éter luminífero".
| + | Na experiência, a luz tinha que percorrer 11 m, sendo o desvio de 0,4 franja. Para este desvio ser detectado mais facilmente, o aparelho foi montado numa sala fechada, eliminando a maioria dos efeitos termais e vibracionais. Estava colocado sobre um grande bloco de arenito com 30 cm de espessura e 150 cm^2, que por sua vez flutuava numa calha anelar com mercúrio. Estimou-se uma precisão de 0,01 franja. Por estar a flutuar em cima de mercúrio, a rotação do aparelho tornava-se fácil de tal modo que, dando um impulso constante, ele percorreria todos os ângulos possíveis da direção do éter, enquanto eram continuamente efetuadas medidas olhando para a ocular. Durante cada uma das rotações completas do aparelho, cada braço ficaria paralelo ao éter duas vezes, em sentidos opostos, assim como perpendicular, também duas vezes e em sentidos opostos. Este efeito mostraria leituras na forma duma onda sinusoidal percorrida ao longo de 2 pi. |
| | | |
− | == Medindo o Éter ==
| + | Mas, após todos estes cuidadosos planeamento e preparação, a experiência ficou conhecida como a mais famosa experiência falhada. Ao invés de dar informações sobre as propriedades do éter, o artigo de Michelson e Morley publicado no American Journal of Science dava resultados tão pequenos como 1/40 do desvio esperado. A velocidade resultante destes dados era demasiado pequena para servir de indício de velocidade relativamente ao éter. Mais tarde mostrou-se que, dentro de um pequeno erro experimental, se podia dizer que o efeito era zero. Estes resultados negativos viriam a ser confirmados pela teoria da relatividade restrita de Einstein, de 1905, assente no postulado da constância da velocidade da luz. |
− | [[Ficheiro:AetherWind.svg|thumb|left]]
| + | |
− | A cada ano, a Terra viaja tremendas distâncias em sua órbita ao redor do sol, a uma velocidade em torno de 30 km/segundo, em torno 100.000 km por hora. Era proposto que a Terra poderia estar, a todo instante, se movendo através de um éter e produzindo um "Vento Etéreo" detectável. A qualquer ponto da superfície da Terra, a intensidade e a direção do vento poderiam variar com o horário do dia e a estação do ano. Através da análise do vento aparente em vários momentos diferentes do dia, deveria ser possível a separação dos componentes devido a movimentação da terra em relação ao sistema solar em qualquer situação de movimento desse mesmo sistema.
| + | |
| | | |
− | O efeito do vento etéreo em ondas de luz deveria ser semelhante ao efeito do vento sobre as ondas de som. Ondas de som viajam em uma velocidade constante em relação ao meio em que se encontram (isso varia de acordo com a pressão, temperatura etc(veja [[Som]]), mas é normalmente de 340 m/s). Então, se a velocidade do som em nossas condições é de 340 m/s, em uma condição de vento de 10 m/s em relação ao chão, dentro da corrente de vento, a viagem do som terá 330 m/s(340 - 10). Ao percorrer contra a corrente de vento, parecerá que o som está viajando a 350 m/s(340 + 10). Medindo a velocidade do som em comparação ao solo em direções diferentes nos permite calcular a velocidade do ar em relação ao chão.
| + | Apesar de Michelson e Morley terem passado a efetuar outras experiências após a sua publicação do seu resultado principal em 1887, ambos continuaram ativos na área do éter. Outras versões da mesma experiência foram levadas a cabo com maior sofisticação, eliminando qualquer tipo de possibilidade de onda estacionária dentro do aparelho, efeitos de magnetoestrição, efeitos termais, etc. Em 1958, Charles H. Townes colocou um limite superior ao desvio, incluindo quaisquer erros experimentais, de apenas 30 m/s para o vento do éter. Em 1974, novas realizações da experiência, com lasers muito precisos, reduziram esse resultado para 0,025 m/s. Em 1979, a experiência de Brillet-Hall estabeleceu um limite de 30 m/s para qualquer direção única, e reduziu para apenas 10^-6 m/s para o caso bidirecional. Em 1990, uma nova experiência com a duração de um ano baixou o limite para 2 x 10^-13 m/s. |
| | | |
− | O éter hoje é tido como um assunto arriscadíssimo de se discutir em aula, sendo para muitos quase uma palavra proibida de se usar.
| |
| | | |
− | <!--
| |
| | | |
− | If the speed of the sound cannot be directly measured, an alternative method is to measure the time that the sound takes to bounce off of a reflector and return to the origin. This is done parallel to the wind and perpendicular (since the direction of the wind is unknown before hand, just determine the time for several different directions). The cumulative round trip effects of the wind in the two orientations slightly favors the sound travelling at right angles to it. Similarly, the effect of an aether wind on a beam of light would be for the beam to take slightly longer to travel round-trip in the direction parallel to the "wind" than to travel the same round-trip distance at right angles to it.
| |
− |
| |
− | "Slightly" is key, in that, over a distance on the order of a few meters, the difference in time for the two round trips would be only on the order of a millionth of a millionth of a second. At this point the only truly accurate measurements of the speed of light were those carried out by [[Albert Abraham Michelson]], which had resulted in measurements accurate to a few meters per second. While a stunning achievement in its own right, this was certainly not nearly enough accuracy to be able to detect the aether.
| |
− |
| |
− | == O Experimento ==
| |
− | Michelson, entretanto, já havia visto a solução a este problema. Seu projeto, posteriormente conhecido como [[interferômetro]], mandava uma fonte singular de luz monocromática através de um [[beam splitter|espelho semi-prateado]] que era usado para dividir em duas colunas viajando em certos ângulos até um outro. Depois de serem divididas, After leaving the splitter, the beams travelled out to the ends of long arms where they were reflected back into the middle on small mirrors. They then recombined on the far side of the splitter in an eyepiece, producing a pattern of constructive and destructive interference based on the length of the arms. Any slight change in the amount of time the beams spent in transit would then be observed as a shift in the positions of the interference fringes. If the aether were stationary relative to the sun, then the Earth's motion would produce a shift of about 0.04 fringes.
| |
− |
| |
− | Michelson had made several measurements with an experimental device in 1881, in which he noticed that the expected shift of 0.04 was not seen, and a smaller shift of about 0.02 was. However his apparatus was a prototype, and had experimental errors far too large to say anything about the aether wind. For this measurement a much more accurate and tightly controlled experiment would have to be carried out. It was, however, successful in demonstrating that the basic apparatus was feasible.
| |
− |
| |
− | [[Ficheiro:Michelson-morley.png|325px|thumb|direita|A Michelson interferometer.]]
| |
− | He then combined forces with [[Edward Morley]] and spent a considerably long amount of time and money creating an improved version with more than enough accuracy to detect the drift. In their experiment the light was repeatedly reflected back and forth along the arms, increasing the path length to 11m. At this length the drift would be about 1/6th of a fringe. To make that easily detectable the apparatus was located in a closed room in the basement of a stone building, eliminating most thermal and vibrational effects. Vibrations were further reduced by building the apparatus on top of a huge block of marble, which was then floated in a pool of mercury. They calculated that effects of about 1/100th of a fringe would be detectable.
| |
− |
| |
− | The mercury pool allowed the device to be turned, so that it could be rotated through the entire range of possible angles to the "aether wind". Even over a short period of time some sort of effect would be noticed simply by rotating the device, such that one arm rotated into the direction of the wind and the other away. Over longer periods day/night cycles or yearly cycles would also be easily measurable.
| |
− |
| |
− | == The most famous failed experiment ==
| |
− | Ironically, after all this thought and preparation, the experiment became what might be called the most famous failed experiment to date. Instead of providing insight into the properties of the aether, it produced none of the effects to be expected if the Earth's motion produced an "aether wind". Although a small "velocity" was measured, it was far too small to be used as evidence of aether, did not seem to vary in a day/night or seasonal pattern, and was within the range of experimental error that meant the speed might actually be zero. The apparatus behaved as if there were no wind at all—as if the Earth had no motion with reference to a medium.
| |
− |
| |
− | Although Michelson and Morley went on to different experiments after their first publication in 1887, both remained active in the field. Other versions of the experiment were carried out with increasing sophistication. Kennedy and Illingsworth both modified the mirrors to include a half-wave "step", eliminating the possibility of some sort of standing wave pattern within the apparatus. Illingsworth could detect changes on the order of 1/300th of a fringe, Kennedy up to 1/1500th. Miller later built a non-magnetic device to eliminate [[magnetostriction]], while Michelson built one of non-expanding [[invar]] to eliminate any remaining thermal effects. Others from around the world increased accuracy, eliminated possible side effects, or both. All of these also returned the "null" result.
| |
− |
| |
− | :It is important to understand the term "null result". This does not imply "zero", but "not what we expected". The aether theories predicted a drift speed equivalent to the motion of the Earth, about 30km/s, but the various MM experiments showed effects at least ten times less. More modern experiments have reduced this to under 1/30th km/s, one-thousand times.
| |
− |
| |
− | Morley was not convinced of his own results, and went on to conduct additional experiments with [[Dayton Miller]]. Miller worked on increasingly large experiments, culminating in one with a 32m (effective) arm length at an installation at the [[Mount Wilson observatory]]. To avoid the possibility of the aether wind being blocked by solid walls, he used a special shed with thin walls, mainly of canvas. He consistently measured a small positive effect with a seasonal cycle, which he attributed to aether entrainment (see below). However the effect was still much smaller than classical theories had predicted, by about 50 times. He remained convinced this was due to ''partial'' entrainment, though he did not attempt an explanation.
| |
− |
| |
− | Though Kennedy later also carried out an experiment at Mount Wilson, finding 1/10 the drift measured by Miller, and no seasonal effects, Miller's findings were considered important at the time, and were discussed by Michelson, [[Hendrik Lorentz|Lorentz]] and others at a meeting reported in 1928 (ref below). There was general agreement that more experimentation was needed to check Miller's results. Lorentz recognised that the results, whatever their cause, did not quite tally with either his or Einstein's versions of [[special relativity]]. Einstein was not present at the meeting and felt the results could be dismissed as [[experimental error]] (see Shankland ref below).
| |
− |
| |
− | <center>
| |
− |
| |
− | {| BORDER
| |
− | |----- ALIGN="CENTER" VALIGN="TOP"
| |
− | | ALIGN="CENTER" VALIGN="TOP" |
| |
− | <center>'''Name'''</center>
| |
− | | VALIGN="CENTER" | <center>''' Year '''</center>
| |
− | | VALIGN="CENTER" | <center>''' Arm length '''
| |
− |
| |
− | '''(meters)'''</center>
| |
− | | VALIGN="CENTER" | <center>''' Fringe shift '''
| |
− |
| |
− | '''expected'''</center>
| |
− | | VALIGN="CENTER" | <center>''' Fringe shift '''
| |
− |
| |
− | '''measured'''</center>
| |
− | <td><center>''' Experimental '''
| |
− |
| |
− | '''Resolution'''</center>
| |
− | | '''Upper Limit'''
| |
− |
| |
− | '''on V<sub>aether</sub>'''
| |
− | |-----
| |
− | | VALIGN="CENTER" | <center>Michelson</center>
| |
− | | VALIGN="CENTER" | <center>1881</center>
| |
− | | VALIGN="CENTER" | <center>1.2</center>
| |
− | | VALIGN="CENTER" | <center>0.04</center>
| |
− | | VALIGN="CENTER" | <center>0.02</center>
| |
− | <td><center> </center>
| |
− | |
| |
− | |-----
| |
− | | VALIGN="CENTER" | <center>Michelson + Morley</center>
| |
− | | VALIGN="CENTER" | <center>1887</center>
| |
− | | VALIGN="CENTER" | <center>11.0</center>
| |
− | | VALIGN="CENTER" | <center>0.4</center>
| |
− | | VALIGN="CENTER" | <center>< 0.01</center>
| |
− | <td><center> </center>
| |
− | <td><center>8 km/s </center>
| |
− | |-----
| |
− | | VALIGN="CENTER" | <center>Morley + Morley</center>
| |
− | | VALIGN="CENTER" | <center>1902-04</center>
| |
− | | VALIGN="CENTER" | <center>32.2</center>
| |
− | | VALIGN="CENTER" | <center>1.13</center>
| |
− | | VALIGN="CENTER" | <center>0.015</center>
| |
− | <td><center> </center>
| |
− | |
| |
− | |-----
| |
− | | VALIGN="CENTER" | <center>Miller</center>
| |
− | | VALIGN="CENTER" | <center>1921</center>
| |
− | | VALIGN="CENTER" | <center>32.0</center>
| |
− | | VALIGN="CENTER" | <center>1.12</center>
| |
− | | VALIGN="CENTER" | <center>0.08</center>
| |
− | <td><center> </center>
| |
− | |
| |
− | |-----
| |
− | <td><center>Miller</center>
| |
− | <td><center>1923-24</center>
| |
− | <td><center>32.0</center>
| |
− | <td><center>1.12</center>
| |
− | <td><center>0.03</center>
| |
− | | ||
| |
− | |-----
| |
− | <td><center>Miller (Sunlight)</center>
| |
− | <td><center>1924</center>
| |
− | <td><center>32.0</center>
| |
− | <td><center>1.12</center>
| |
− | <td><center>0.014</center>
| |
− | | ||
| |
− | |-----
| |
− | <td><center>Tomascheck (Starlight)</center>
| |
− | <td><center>1924</center>
| |
− | <td><center>8.6</center>
| |
− | <td><center>0.3</center>
| |
− | <td><center>0.02</center>
| |
− | | ||
| |
− | |-----
| |
− | | VALIGN="CENTER" | <center>Miller</center>
| |
− | | VALIGN="CENTER" | <center>1925-26</center>
| |
− | | VALIGN="CENTER" | <center>32.0</center>
| |
− | | VALIGN="CENTER" | <center>1.12</center>
| |
− | | VALIGN="CENTER" | <center>0.088</center>
| |
− | | ||
| |
− | |-----
| |
− | | VALIGN="CENTER" | <center>Kennedy (Mt Wilson)</center>
| |
− | | VALIGN="CENTER" | <center>1926</center>
| |
− | | VALIGN="CENTER" | <center>2.0</center>
| |
− | | VALIGN="CENTER" | <center>0.07</center>
| |
− | | VALIGN="CENTER" | <center>0.002</center>
| |
− | <td><center> </center>
| |
− | |
| |
− | |-----
| |
− | | VALIGN="CENTER" | <center>Illingworth</center>
| |
− | | VALIGN="CENTER" | <center>1927</center>
| |
− | | VALIGN="CENTER" | <center>2.0</center>
| |
− | | VALIGN="CENTER" | <center>0.07</center>
| |
− | | VALIGN="CENTER" | <center>0.0002</center>
| |
− | <td><center>0.0006</center>
| |
− | | ALIGN="CENTER" | 1 km/s
| |
− | |-----
| |
− | <td><center>Piccard + Stahel(Mt Rigi)</center>
| |
− | <td><center>1927</center>
| |
− | <td><center>2.8</center>
| |
− | <td><center>0.13</center>
| |
− | <td><center>0.006</center>
| |
− | <td><center> </center>
| |
− | |
| |
− | |-----
| |
− | <td><center>Michelson et al.</center>
| |
− | <td><center>1929</center>
| |
− | <td><center>25.9</center>
| |
− | <td><center>0.9</center>
| |
− | <td><center>0.01</center>
| |
− | | ||
| |
− | |-----
| |
− | <td><center>Joos</center>
| |
− | <td><center>1930</center>
| |
− | <td><center>21.0</center>
| |
− | <td><center>0.75</center>
| |
− | <td><center>0.002</center>
| |
− | | ||
| |
− | |}
| |
− | </center>
| |
− |
| |
− | In recent times versions of the MM experiment have become commonplace. [[Laser]]s and [[maser]]s amplify light by repeatedly bouncing it back and forth inside a carefully tuned cavity, thereby inducing atoms in the cavity to decay and give off more light. The result is an effective path length of kilometers. Better yet, the light emitted in one cavity can be used to start the same cascade in another set at right angles, thereby creating an interferometer of extreme accuracy.
| |
− |
| |
− | The first such experiment was led by [[Charles H. Townes]], one of the co-creators of the first maser. Their 1958 experiment put an upper limit on drift, including any possible experimental errors, of only 30 m/s. In 1974 a repeat with accurate lasers in the triangular Trimmer experiment reduced this to 0.025 m/s, and included tests of entrainment by placing one leg in glass. In 1979 the Brillet-Hall experiment put an upper limit of 30 m/s for any one direction, but reduced this to only 0.000001 m/s for a two-direction case (ie, still or partially entrained aether). A year long repeat known as Hils and Hall, published in 1990, reduced this to 2x10<sup>-13</sup>.
| |
− |
| |
− | == Fallout ==
| |
− | This result was rather astounding and not explainable by the then-current theory of wave propagation in a static aether. Several explanations were attempted, among them, that the experiment had a hidden flaw (apparently Michelson's initial belief), or that the Earth's gravitational field somehow "dragged" the aether around with it in such a way as locally to eliminate its effect. Miller would have argued that, in most if not all experiments other than his own, there was little possibility of detecting an aether wind since it was almost completely blocked out by the laboratory walls or by the apparatus itself. Be this as it may, the idea of a simple aether, what became known as the ''First Postulate'', had been dealt a serious blow.
| |
− |
| |
− | A number of experiments were carried out to investigate the concept of aether dragging, or ''entrainment''. The most convincing was carried out by Hamar, who placed one arm of the interferometer between two huge lead blocks. If aether were dragged by mass, the blocks would, it was theorised, have been enough to cause a visible effect. Once again, no effect was seen.
| |
− |
| |
− | [[Walter Ritz]]'s [[emitter theory]] (or [[ballistic theory]]), was also consistent with the results of the experiment, not requiring aether, more intuitive and paradox-free. This became known as the ''Second Postulate''. However it also led to several "obvious" optical effects that were not seen in astronomical photographs, notably in observations of binary stars in which the light from the two stars could be measured in an interferometer.
| |
− |
| |
− | The [[Sagnac experiment]] placed the MM apparatus on a constantly rotating turntable. In doing so any ballistic theories such as Ritz's could be tested directly, as the light going one way around the device would have different length to travel than light going the other way (the eyepiece and mirrors would be moving toward/away from the light). In Ritz's theory there would be no shift, because the net velocity between the light source and detector was zero (they were both mounted on the turntable). However in this case an effect ''was'' seen, thereby eliminating any simple ballistic theory. This fringe-shift effect is used today in [[laser gyroscope]]s.
| |
− |
| |
− | Another possible solution was found in the [[Fitzgerald-Lorentz contraction]]. In this theory all objects physically contract along the line of motion relative to the aether, so while the light may indeed transit slower on that arm, it also ends up travelling a shorter distance that exactly cancels out the drift.
| |
− |
| |
− | In [[1932]] the [[Kennedy-Thorndike experiment]] modified the Michelson-Morley experiment by making the path lengths of the split beam unequal, with one arm being very long. In this version the two ends of the experiment were at different velocities due to the rotation of the earth, so the contraction would not "work out" to exactly cancel the result. Once again, no effect was seen.
| |
− |
| |
− | [[Ernst Mach]] was among the first physicists to suggest that the experiment actually amounted to a disproof of the aether theory. The development of what became [[Albert Einstein|Einstein]]'s [[special relativity|special theory of relativity]] had the Fitzgerald-Lorentz contraction derived from the invariance postulate, and was also consistent with the apparently null results of most experiments (though not, as was recognised at the 1928 meeting, with Miller's observed seasonal effects). Today relativity is generally considered the "solution" to the MM null result.
| |
− |
| |
− | The [[Trouton-Noble experiment]] is regarded as the electrostatic equivalent of the Michelson-Morley optical experiment, though whether or not it can ever be done with the necessary sensitivity is debatable.
| |
− | [[Arquivo:experiencia.jpg]]
| |
− |
| |
− | == {{Ver também}} ==
| |
− | * [[Counter-intuitive]]
| |
− | * [[Special relativity]]
| |
− | * [[Aether drag hypothesis]]
| |
− |
| |
− | -->
| |
| | | |
| == Referências == | | == Referências == |
| + | * Os resultados negativos dos experimentos de Michelson-Morley refutaram a teoria do éter? A teoria da relatividade restrita se |
| + | originou dos experimentos de Michelson-Morley?,Fernando Lang da Silveira – Instituto de Física – UFRGS |
| + | [http://www.if.ufrgs.br/public/spin/2004/spin406/Relatividade%20restrita%201.pdf] |
| + | * Blog História da Física - (2011)[http://historiadafisicauc.blogspot.com.br/2011/06/nos-finais-do-seculo-xix-teoria.html] |
| * A. A. Michelson and E.W. Morley, Philos. Mag. S.5, 24 (151), 449-463 (1887), [http://www.aip.org/history/gap/PDF/michelson.pdf] | | * A. A. Michelson and E.W. Morley, Philos. Mag. S.5, 24 (151), 449-463 (1887), [http://www.aip.org/history/gap/PDF/michelson.pdf] |
| * A. A. Michelson et al., ''Conference on the Michelson-Morley Experiment'', Astrophysical Journal 68, 341 (1928) | | * A. A. Michelson et al., ''Conference on the Michelson-Morley Experiment'', Astrophysical Journal 68, 341 (1928) |
− | * Robert S. Shankland et al., ''New Analysis of the Interferometer Observations of Dayton C. Miller'', Reviews of Modern Physics, 27(2):167-178, (1955)
| |
− | * James DeMeo, [http://www.orgonelab.org/miller.htm ''Critical Review of the Shankland et al Analysis of Dayton Miller’s Aether-Drift Experiments''], (2000)
| |
− |
| |
− | == {{Ligações externas}} ==
| |
− | * {{citar web |url=http://www.newsweek.com/id/204892 |título=What Newly Released Papers Reveal About Einstein | Newsweek Voices - Sharon Begley | Newsweek.com ||accessodata=03-07-2009}}{{en}}
| |
− | *[http://carnap.umd.edu/phil250/aether_drift/interferometers.html Interferometers Used in Aether Drift Experiments From 1881-1931]
| |
− | *[http://math.ucr.edu/home/baez/physics/Relativity/SR/experiments.html#2.%20early%20experiments Early Experiments]
| |
− | *[http://link.aps.org/abstract/PRL/v91/e020401 Modern Michelson-Morley Experiment improves the best previous result by 2 orders of magnitude, from 2003]
| |
− | *[http://interferometro-webduino.blogspot.com.br/p/o-que-e-interferometro.html]
| |
− | {{Portal3|Ciência|Física}}
| |
− |
| |
− | {{DEFAULTSORT:Experiencia Michelson Morley}}
| |
− | [[Categoria:Experimentos de física]]
| |
− | [[Categoria:História da física]]
| |
− |
| |
− | {{Bom interwiki|de}}
| |
− | {{Link FA|sv}}
| |