Mudanças entre as edições de "Bayes Theorem - Teorema de Bayes"

De Stoa
Ir para: navegação, pesquisa
(Replacing page with '<math> \begin{align} P(A|B) & = \frac{P(B | A)\, P(A)}{P(B)} \\ & \propto L(A | B)\, P(A) \end{align} </math>')
Linha 1: Linha 1:
The [http://en.wikipedia.org/wiki/Bayes%27_theorem  Bayes' theorem] is a result of probability theory that states that:
 
 
<math>P(A|B) = \frac{P(B|A) P(A)}{P(B)}</math>
 
<math>a^b</math>
 
where P(A|B) is the conditional probability of event A given event B, P(A) is the probability of event A, and so on.
 
 
Let's wonder about the following problem: given a histogram of the frequencies measured of some event, what is the probability that the real distribution is a given function?
 
 
Let's simplify by assuming an experiment with two possible outcomes (1 and 2). Let's assume that in a statistical survey, event 1 is find n1 times and event 2 n2 times. What is the probability that the real probability of event 1 is p?
 
 
By the Bayes' theorem we have:
 
 
 
<math>
 
<math>
P(p | n_1,n_2) = \frac{P(n_1,n_2| p) P(p) }{P(n1,n2)}
+
  \begin{align}
 +
  P(A|B) =       \frac{P(B | A)\, P(A)}{P(B)}  \\
 +
            &  \propto L(A | B)\, P(A)
 +
  \end{align}
 
</math>
 
</math>
 
As we do not now the (unconditional) probability of the distribution being p, let's make the assumption that any distribution is as good as any other, that is, let's assume that P(p) is a constant. As P(n1,n2) does not depend on p, and we must satisfy:
 
[[math]]
 
\int_0^1 P(p| n_1, n_2) dp = 1
 
[[math]]
 
 
Then we have:
 
[[math]]
 
P(p | n_1,n_2) = \frac{P(n_1,n_2| p) }{ \int_0^1 P(n_1, n_2|p) dp}
 
[[math]]
 
 
The probability that 1 happens n1 times and 2 happens n2 times given that the probability of 1 is p is given by the binomial distribution:
 
[[math]]
 
P(n_1,n_2| p) \propto p^{n_1} (1-p)^{n_2}
 
[[math]]
 
 
Noting that:
 
[[math]]
 
\int p^{n_1} (1-p)^{n_2} dp = \frac{n_1!n_2!}{(n_1+n_2+1)!}
 
[[math]]
 
 
we finally get:
 
[[math]]
 
P(p | n_1,n_2) = \frac{p^{n_1} (1-p)^{n_2}}{ \int_0^1 p^{n_1} (1-p)^{n_2} dp} = \frac{(n_1+n_2+1)!}{n_1!n_2!}p^{n_1} (1-p)^{n_2}
 
[[math]]
 
 
The mean probability of 1 happening is:
 
[[math]]
 
\left\langle p \right\rangle = \int P(p | n_1,n_2) p dp = \frac{(n_1+n_2+1)!}{n_1!n_2!} \int p^{n_1+1} (1-p)^{n_2} dp =\frac{(n_1+n_2+1)!}{n_1!n_2!}\frac{(n_1+1)!n_2!}{(n_1+n_2+2)!}
 
[[math]]
 
So:
 
[[math]]
 
\left\langle p \right\rangle = \frac{n_1+1}{n_1+n_2+2}
 
[[math]]
 
 
The mean quadratic probability is:
 
[[math]]
 
\left\langle p^2 \right\rangle = \int P(p | n_1,n_2) p^2 dp = \frac{(n_1+n_2+1)!}{n_1!n_2!} \int p^{n_1+2} (1-p)^{n_2} dp =\frac{(n_1+n_2+1)!}{n_1!n_2!}\frac{(n_1+2)!n_2!}{(n_1+n_2+3)!}
 
[[math]]
 
 
So:
 
[[math]]
 
\left\langle p^2 \right\rangle = \frac{(n_1+1)(n_1+2)}{(n_1+n_2+2)(n_1+n_2+3)}
 
[[math]]
 
 
And the variance is:
 
[[math]]
 
\sigma = \left\langle p^2 \right\rangle - \left\langle p \right\rangle^2 = \frac{(n_1+1)(n_1+2)}{(n_1+n_2+2)(n_1+n_2+3)} - \frac{(n_1+1)^2}{(n_1+n_2+2)^2}
 
[[math]]
 
[[math]]
 
\sigma = \frac{(n_1+1)(n_1+2)(n_1+n_2+2) - (n_1+1)^2(n_1+n_2+3)}{(n_1+n_2+2)^2(n_1+n_2+3)}
 
[[math]]
 

Edição das 19h36min de 25 de julho de 2007


  \begin{align}
  P(A|B)  &  =       \frac{P(B | A)\, P(A)}{P(B)}  \\
            &  \propto L(A | B)\, P(A)
  \end{align}

Ferramentas pessoais
Espaços nominais

Variantes
Ações
Navegação
Imprimir/exportar
Ferramentas